Atjaunināt sīkdatņu piekrišanu

E-grāmata: Surface Electromagnetics: With Applications in Antenna, Microwave, and Optical Engineering

Edited by (University of California, Los Angeles), Edited by (Tsinghua University, Beijing)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 20-Jun-2019
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108654203
  • Formāts - EPUB+DRM
  • Cena: 201,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 20-Jun-2019
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108654203

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Written by the leading experts in the field, this text provides systematic coverage of the theory, physics, functional designs, and engineering applications of advanced engineered electromagnetic surfaces. All the essential topics are included, from the fundamental theorems of surface electromagnetics, to analytical models, general sheet transmission conditions (GSTC), metasurface synthesis, and quasi-periodic analysis. A plethora of examples throughout illustrate the practical applications of surface electromagnetics, including gap waveguides, modulated metasurface antennas, transmit arrays, microwave imaging, cloaking, and orbital angular momentum (OAM ) beam generation, allowing readers to develop their own surface electromagnetics-based devices and systems. Enabling a fully comprehensive understanding of surface electromagnetics, this is an invaluable text for researchers, practising engineers and students working in electromagnetics antennas, metasurfaces and optics.

Written by leading experts in the field, this text provides systematic coverage of the theoretical analysis, physics, functional designs, and engineering applications of advanced engineered electromagnetic surfaces. It is invaluable reading for researchers, practising engineers and students in electromagnetics, antennas, metasurfaces and optics.

Recenzijas

'This book provides a comprehensive collection of recent progress made by leading experts in surface electromagnetics. It is an excellent reference for researchers, practicing engineers, and graduate students with an interest in this disruptive technology in electromagnetics.' Chi-Hou Chan, City University of Hong Kong 'This book is an impressive compendium of recent scientific and engineering progress made in surface electromagnetics, a disruptive technology with many important, practical applications. Chapters written by many of the internationally recognized leaders in this field make it an outstanding reference for scientists and engineers at all levels.' Richard W. Ziolkowski, IEEE Fellow, The University of Arizona

Papildus informācija

Provides systematic coverage of the theory, physics, functional designs, and engineering applications of advanced electromagnetic surfaces.
Contributors xvi
Acknowledgments xix
1 Introduction to Surface Electromagnetics 1(29)
Fan Yang
Yahya Rahmat-Samii
1.1 What Is Surface Electromagnetics?
1(2)
1.2 Development of Electromagnetic Surfaces
3(9)
1.2.1 Classical Uniform EM Surfaces
3(2)
1.2.2 Periodic EM Surfaces: Frequency Selective Surface
5(2)
1.2.3 Periodic EM Surfaces: Soft/Hard Surface and EBG Surface
7(2)
1.2.4 Recent Progress on Quasi-periodic EM Surfaces
9(3)
1.3 Importance of Surface Electromagnetics
12(8)
1.3.1 Surface Equivalence Theorem
13(3)
1.3.2 Prominent Features of EM Surfaces
16(3)
1.1.3 Comparisons with Related Sciences and Technologies
19(1)
1.4 Research Frontiers of Surface Electromagnetics
20(3)
1.4.1 Surface Electromagnetic Theory
21(1)
1.4.2 Artificial Surface Designs with Novel Properties
22(1)
1.4.3 SEM-Based Engineering Applications
22(1)
1.5 Contents of This Book
23(4)
1.5.1 Models, Analysis, and Synthesis of EM Surfaces
24(1)
1.5.2 Guided Wave, Leaky Wave, and Plane Wave Properties of EM Surfaces
24(2)
1.5.3 Applications of Surface Electromagnetics
26(1)
References
27(3)
2 Analytical Modeling of Electromagnetic Surfaces 30(36)
Viktar Asadchy
Ana Diaz-Rubio
Do-Hoon Kwon
Sergei Tretyakov
2.1 Introduction: Definitions, Basic Classification, Main Functionalities of Metasurfaces
30(3)
2.2 Metasurfaces versus Thin Slabs of Homogeneous Materials and Other Artificial Periodic Surfaces
33(3)
2.3 Comparison of Possible Functionalities
36(1)
2.4 Homogenization Models of Metasurfaces
37(9)
2.4.1 Polarizability-Based Model
40(2)
2.4.2 Susceptibility-Based Model
42(1)
2.4.3 Model Based on Equivalent Impedance Matrix
43(3)
2.5 Bi-anisotropy and Nonreciprocity: Definitions and Enabled Functionalities
46(8)
2.5.1 Bi-anisotropy
46(3)
2.5.2 Nonreciprocity
49(3)
2.5.3 Enabled Functionalities
52(2)
2.6 Metasurfaces for Shaping Transmitted Fields and Reflected Fields
54(7)
2.6.1 Control of Wave Propagation Direction in Transmission
54(2)
2.6.2 Control of Wave Propagation Direction in Reflection
56(1)
2.6.3 Control of Polarization in Reflection
57(3)
2.6.4 Control of Multiple Waves in Reflection
60(1)
References
61(5)
3 Using Generalized Sheet Transition Conditions (GSTCs) in the Analysis of Metasurfaces 66(58)
Christopher L. Holloway
Edward F Kuester
3.1 Introduction and Definitions of Metasurfaces
66(2)
3.2 Metasurfaces versus Frequency-Selective Surfaces
68(5)
3.3 Characterization of Metasurfaces: Surface versus Bulk Properties
73(5)
3.4 Generalized Sheet Transition Conditions (GSTCs)
78(3)
3.4.1 GSTCs for a Metafilm
78(1)
3.4.2 GSTCs for a Metascreen
79(1)
3.4.3 GSTCs for a Metagrating
80(1)
3.5 Reflection and Transmission Coefficients
81(11)
3.5.1 Metafilms
81(6)
3.5.2 Metascreens
87(3)
3.5.3 Metagratings
90(2)
3.6 Determining the Surface Parameters
92(7)
3.6.1 Retrieval Expressions for Metafilms
93(2)
3.6.2 Retrieval Expressions for Metascreens
95(3)
3.6.3 Retrieval Expressions for Metagratings
98(1)
3.7 Some Applications of GSTCs
99(15)
3.7.1 Guided Waves on a Single Metasurface
99(4)
3.7.2 Resonator Size Reduction
103(5)
3.7.3 Waveguides
108(2)
3.7.4 Controllable Reflections and Transmissions
110(4)
3.8 Impedance-Type Boundary Conditions
114(1)
3.9 Isolated Scatterers and One-Dimensional Arrays
114(1)
3.10 Summary
115(1)
References
115(9)
4 Electromagnetic Metasurface Synthesis, Analysis, and Applications 124(41)
Karim Achouri
Yousef Vahabzadeh
Christophe Caloz
4.1 Introduction
124(1)
4.2 Mathematical Synthesis
125(8)
4.2.1 Metasurface Boundary Conditions
126(2)
4.2.2 Synthesis Procedure
128(5)
4.3 Numerical Analysis
133(11)
4.3.1 Metasurface Analysis
133(3)
4.3.2 Two-Dimensional Finite-Difference Frequency-Domain Method
136(2)
4.3.3 Two-Dimensional Finite-Difference Time-Domain Method
138(3)
4.3.4 Finite-Difference Time-Domain Scheme for Dispersive Metasurface
141(1)
4.3.5 One-Dimensional Analysis of Nonlinear Second-Order Metasurfaces
142(2)
4.4 Illustrative Examples
144(3)
4.4.1 Negative Refraction Metasurface
144(1)
4.4.2 Nongyrotropic Nonreciprocal Metasurface
145(1)
4.4.3 Time-Varying Half-Wave Absorber
146(1)
4.5 Practical Realization
147(12)
4.5.1 Relation with Scattering Parameters
147(5)
4.5.2 Implementation of the Scattering Particles
152(7)
4.6 Conclusion
159(1)
4.7 Conditions of Reciprocity, Passivity, and Loss
160(1)
References
161(4)
5 Analysis and Modeling of Quasi-periodic Structures 165(33)
Maokun Li
5.1 Introduction
165(3)
5.2 Study of Quasi-periodic Effect
168(13)
5.2.1 Calculation of Element Reflection Phase
168(4)
5.2.2 Study of Quasi-periodic Effect
172(2)
5.2.3 Phase Adjustment in Reflectarray Antennas
174(7)
5.3 Full-Wave Modeling of Quasi-periodic Structures Using Reduced Basis Method
181(12)
5.3.1 Formulation
181(8)
5.3.2 Numerical Results
189(4)
5.4 Summary and Outlook
193(1)
References
194(4)
6 Gap Waveguide Technology 198(33)
Eva Rajo-Iglesias
Zvonimir Sipus
Ashraf Uz Zaman
6.1 Origin of Gap Waveguide Technology
198(5)
6.2 Approximate Method of Analysis of Parallel-Plate Waveguides Containing EBG Surfaces
203(5)
6.2.1 Plane Wave Spectral Domain Approach
203(1)
6.2.2 Homogenization Using Spectral Surface Admittance
204(4)
6.3 Design of Stop Bands for Parallel Plate Structures
208(3)
6.4 Application to RF Packaging
211(2)
6.5 Evaluation of Losses
213(1)
6.6 Gap Waveguide Antennas
214(11)
6.6.1 High-Gain Antennas Designed in Ridge Gap Waveguide and Groove Gap Waveguide Geometries
216(4)
6.6.2 High-Gain Antennas Designed in Inverted Microstrip Gap Waveguide and Printed Gap Waveguide Geometry
220(2)
6.6.3 Single-Layer Antennas Based on Gap Waveguide Technology
222(1)
6.6.4 Frequency Scanning Antenna Based on Gap Waveguide Technology
223(2)
6.7 Conclusion
225(1)
References
226(5)
7 Modulated Metasurface Antennas 231(41)
Gabriele Minatti
David Gonzalez-Ovejero
Enrica Martini
Stefano Maci
7.1 Introduction
231(3)
7.2 Adiabatic Floquet Waves for Curvilinear Locally Periodic Boundary Conditions
234(4)
7.2.1 Constant Average Non-uniform Reactances
235(1)
7.2.2 Adiabatic Floquet Wave Expansion
236(2)
7.3 Design of Modulated MTS Antennas
238(7)
7.3.1 Continuous Reactance Synthesis
240(1)
7.3.2 Pixel Modeling and Detailed Layout
241(4)
7.4 Analysis of Modulated Metasurface Antennas
245(5)
7.4.1 Full-Wave Homogenized Impedance Analysis
246(4)
7.5 Efficiency and Bandwidth of Modulated Metasurface Antennas
250(8)
7.5.1 Efficiency of Metasurface Antennas
251(4)
7.5.2 Bandwidth of Gain
255(3)
7.6 Examples of Antenna Design
258(8)
7.6.1 Shaped Beam Antenna
258(1)
7.6.2 Multibeam Modulated Metasurface Antennas
259(7)
7.7 Discussion and Future Outlook
266(2)
References
268(4)
8 Transmission Surfaces and Transmitarray Antennas 272(29)
Fan Yang
Shenheng Xu
8.1 Introduction
272(2)
8.2 Phase Limits of Transmission Surfaces
274(6)
8.2.1 Phase Limit of a Single-Layer Transmission Surface
274(2)
8.2.2 Phase Limits of Multilayer Transmission Surfaces
276(3)
8.2.3 Discussion on Nonidentical Layers, Wire Coupling, and Cross-Polarization
279(1)
8.3 Transmission Surface Designs
280(7)
8.3.1 A Quad-Layer Transmission Surface Using E-Shaped Elements
280(3)
8.3.2 A Double-Layer Transmission Surface Using Malta-Cross Elements with Vias
283(1)
8.3.3 A Single-Layer Transmission Surface Using Cross-Polarized Fields
284(3)
8.3.4 Other Transmission Surface Designs
287(1)
8.4 Reconfigurable Transmission Surface Designs
287(6)
8.4.1 FSS-Type Reconfigurable Design
288(2)
8.4.2 R/T-Type Reconfigurable Design
290(3)
8.5 Transmitarray Antennas
293(5)
8.5.1 Concept and Design Procedure of Transmitarray Antennas
293(3)
8.5.2 A Transmitarray Design Example
296(2)
References
298(3)
9 Coding and Programmable Metasurfaces 301(24)
Shuo Liu
Tie Jun Cui
9.1 Introduction
301(3)
9.2 Coding Metasurfaces and Their Controls to EM Waves
304(3)
9.3 Programmable Metasurfaces and Imaging Applications
307(12)
9.3.1 Programmable Metasurface
307(4)
9.3.2 Programmable Metasurface under Point Source Excitation
311(4)
9.3.3 Transmission-Type Programmable Metasurface for Imaging Applications
315(4)
9.4 Summary and Outlook
319(1)
References
320(5)
10 Metamaterial and Metasurface Cloaking: Principles and Applications 325(38)
Giuseppe Labate
Ladislau Matekovits
Andrea Alu
10.1 Introduction
325(1)
10.2 Non-uniqueness of the Scattering Problem: Non-radiating Sources and Cloaking Devices
325(3)
10.3 Scattering Theory: Harmonic Field Series and Field Integral Equation Representations
328(1)
10.4 Harmonic Field Series Representation: Cloaking Design with Mie Solutions
329(10)
10.4.1 Plasmonic Cloaking: A Volumetric Metamaterial Coating
331(2)
10.4.2 Mantle Cloaking: A Thin Metasurface Coating
333(2)
10.4.3 Parity-Time Symmetry Cloaking: A Balanced Loss-Gain Coating
335(4)
10.5 Field Integral Equation Representation: Cloaking Design with Non-radiating Sources
339(10)
10.5.1 The Strong Solution: Impedance Matching and Transformation Optics
340(4)
10.5.2 The Weak Solution: Kirchhoff's Current Law and General Scattering Cancellation
344(5)
10.6 Bounds on Cloaking: Causality, Passivity, Time Invariance, Linearity
349(6)
10.6.1 Directionality Issue
351(2)
10.6.2 Bandwidth Issue
353(2)
10.7 Conclusions
355(2)
References
357(6)
11 Orbital Angular Momentum Beam Generation Using Textured Surfaces 363(30)
Mehdi Veysi
Caner Guclu
Filippo Capolino
Yahya Rahmat-Samii
11.1 OAM Beams: Concept and Historical Background
363(3)
11.1.1 Bessel-Gaussian Beams
364(1)
11.1.2 Laguerre-Gaussian (Helical) Beams
365(1)
11.2 Near-Field Applications of OAM Beams
366(2)
11.2.1 Generating Cylindrical Vector Beams
366(1)
11.2.2 Increasing Channel Capacity of Wireless Communication Systems
367(1)
11.3 Potential Far-Field Applications of OAM Beams
368(1)
11.4 Far-Field Characteristics of OAM Beams
369(3)
11.4.1 Bessel-Gaussian Beams
369(2)
11.4.2 Laguerre-Gaussian (Helical) Beams
371(1)
11.5 OAM Beam Generation Using Reflectarray Antennas
372(4)
11.5.1 Rotational Phase Control Principle
372(2)
11.5.2 Double Split-Ring Element
374(2)
11.6 Reflectarrays with Cone-Shaped Patterns
376(7)
11.6.1 Bessel-Beam Reflectarray
376(5)
11.6.2 Helical (Laguerre-Gaussian) Beam Reflectarray
381(2)
11.7 Reflectarrays Radiating Multiple Azimuthally Distributed Pencil Beams
383(3)
11.8 Conclusions and Observations
386(1)
References
387(6)
12 Applications of Metasurfaces in the Microwave, Terahertz, and Optical Regimes 393(45)
Daniel Binion
Lei Kang
Zhi Hao Jiang
Shengyuan Chang
Xingjie Ni
Douglas H. Werner
12.1 Applications of Metasurfaces in the Microwave and Millimeter-Wave Regimes
393(10)
12.1.1 Ultrathin Electromagnetic Absorbers
394(1)
12.1.2 Polarization Control Surfaces
394(2)
12.1.3 Artificial Grounds for Low-Profile Antennas
396(2)
12.1.4 Antenna Superstrates and Coatings
398(1)
12.1.5 Modulated Metasurfaces for Leaky Wave Radiation
399(1)
12.1.6 Scattering Signature Control
400(2)
12.1.7 Reflect-/Transmit-Arrays
402(1)
12.2 Applications of Metasurfaces in the Terahertz Regime
403(15)
12.2.1 History of Terahertz Metasurfaces
403(3)
12.2.2 Recent Developments in Terahertz Metamaterial Technology
406(11)
12.2.3 Future Developments
417(1)
12.3 Applications of Metasurfaces in the Optical Regime
418(6)
12.3.1 Generalized Snell's Law
418(2)
12.3.2 Metalenses
420(1)
12.3.3 OAM Beam Generation
421(1)
12.3.4 Holography
422(1)
12.3.5 Optical Invisibility Cloak
423(1)
12.4 Conclusion
424(1)
References
424(14)
Appendix Representative Literature Review on Surface Electromagnetics 438(28)
Fan Yang
Yahya Rahmat-Samii
Xibi Chen
Xingliang Zhang
Hongjing Xu
Index 466
Fan Yang is Professor in the Department of Electronic Engineering and Director of the Microwave and Antenna Institute at Tsinghua University, Beijing. He is the coauthor of Electromagnetic Band Gap Structures in Antenna Engineering (Cambridge, 2008) and Reflectarray Antennas: Theory Designs and Applications (2018), and is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) and the Applied Computational Electromagnetics Society (ACES). Yahya Rahmat-Samii is a Distinguished Professor, and the holder of the Northrop Grumman Chair in Electromagnetics, in the Department of Electrical and Computer Engineering at the University of California, Los Angeles. He is the co-author of Electromagnetic Band Gap Structures in Antenna Engineering (Cambridge, 2008), and a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), Antenna Measurement Techniques Association (AMTA), Union Radio-Scientifique Internationale (URSI), EMS and the Applied Computational Electromagnetics Society (ACES) and a member of the US National Academy of Engineering.