Atjaunināt sīkdatņu piekrišanu

E-grāmata: Surface Science: Foundations of Catalysis and Nanoscience

(Queen Mary, University of London, UK)
  • Formāts: PDF+DRM
  • Izdošanas datums: 24-Oct-2019
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119546689
  • Formāts - PDF+DRM
  • Cena: 90,36 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 24-Oct-2019
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119546689

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

An updated fourth edition of the text that provides an understanding of chemical transformations and the formation of structures at surfaces

The revised and enhanced fourth edition of Surface Science covers all the essential techniques and phenomena that are relevant to the field. The text elucidates the structural, dynamical, thermodynamic and kinetic principles concentrating on gas/solid and liquid/solid interfaces. These principles allow for an understanding of how and why chemical transformations occur at surfaces. The author (a noted expert on in the field) combines the required chemistry, physics and mathematics to create a text that is accessible and comprehensive.

The fourth edition incorporates new end-of-chapter exercises, the solutions to which are available on-line to demonstrate how problem solving that is relevant to surface science should be performed. Each chapter begins with simple principles and builds to more advanced ones. The advanced topics provide material beyond the introductory level and highlight some frontier areas of study. This updated new edition:

  • Contains an expanded treatment of STM and AFM as well as super-resolution microscopy
  • Reviews advances in the theoretical basis of catalysis and the use of activity descriptors for rational catalyst design
  • Extends the discussion of two-dimensional solids to reflect remarkable advances in their growth and characterization
  • Delves deeper into the surface science of electrochemistry and charge transfer reactions
  • Updates the “Frontiers and Challenges” sections at the end of each chapter as well as the list of references

Written for students, researchers and professionals, the fourth edition of Surface Science offers a revitalized text that contains the tools and a set of principles for understanding the field.

Instructor support material, solutions and PPTs of figures, are available at http://booksupport.wiley.com

Preface xv
Supplementary Material xvii
Introduction 1(10)
I.1 Heterogeneous catalysis
2(1)
I.2 Why surfaces?
3(1)
I.3 Where are surfaces, interfaces, and nanoscale objects important?
3(1)
I.3.1 Making bread from air: ammonia synthesis
4(1)
I.3.2 Gas-to-liquids: fischer-tropsch synthesis, C1 chemistry and artificial photosynthesis
4(1)
I.3.3 Clean propulsion: three-way catalyst, lithium ion batteries, fuel cells
5(1)
I.3.4 Water splitting: oxygen and hydrogen evolution reactions (OER and HER)
5(1)
I.4 Semiconductor processing and nanotechnology
6(2)
I.5 Other areas of relevance
8(1)
I.6 Structure of the book
8(1)
I.7 Further reading
9(1)
References
9(2)
1 Surface and Adsorbate Structure 11(50)
1.1 Clean surface structure
12(17)
1.1.1 Ideal flat surfaces
12(3)
1.1.2 High-index and vicinal planes
15(1)
1.1.3 Faceted surfaces
16(1)
1.1.4 Bimetallic surfaces
17(1)
1.1.5 Oxide and compound semiconductor surfaces
18(2)
1.1.6 The Carbon family: Diamond, Graphite, Graphene, Fullerenes, and Carbon Nanotubes
20(4)
1.1.7 Two-dimensional solids (2D solids)
24(2)
1.1.8 Advanced topic: stacked two-dimensional materials and Moire superlattices
26(2)
1.1.9 Porous solids
28(1)
1.2 Reconstruction and adsorbate structure
29(9)
1.2.1 Implications of surface heterogeneity for adsorbates
29(1)
1.2.2 Clean surface reconstructions
30(1)
1.2.3 Adsorbate-induced reconstructions
31(4)
1.2.4 Islands
35(1)
1.2.5 Chiral surfaces
36(2)
1.3 Band structure of solids
38(12)
1.3.1 Bulk electronic states
38(1)
1.3.2 Metals, semiconductors, and insulators
39(4)
1.3.3 Energy levels at metal interfaces
43(1)
1.3.4 Energy levels at metal-semiconductor interfaces
44(3)
1.3.5 Surface electronic states
47(2)
1.3.6 Size effects in nanoscale systems
49(1)
1.4 The vibrations of solids
50(3)
1.4.1 Bulk systems
50(2)
1.4.2 Nanoscale systems
52(1)
1.5 Summary of important concepts
53(1)
1.6 Frontiers and challenges
53(1)
1.7 Further reading
54(1)
1.8 Exercises
54(3)
References
57(4)
2 Experimental Probes and Techniques 61(70)
2.1 Ultrahigh vacuum
61(2)
2.1.1 The need for UHV
61(1)
2.1.2 Attaining UHV
62(1)
2.2 Light and electron sources
63(5)
2.2.1 Types of lasers
64(1)
2.2.2 Atomic lamps
64(3)
2.2.3 Synchrotrons
67(1)
2.2.4 Free electron laser (FEL)
67(1)
2.2.5 Electron guns
67(1)
2.3 Molecular beams
68(5)
2.3.1 Knudsen molecular beams
69(1)
2.3.2 Free jets
69(2)
2.3.3 Comparison of Knudsen and supersonic beams
71(2)
2.4 Scanning probe techniques
73(14)
2.4.1 Scanning tunnelling microscopy (STM)
74(4)
2.4.2 Scanning tunnelling spectroscopy (STS)
78(2)
2.4.3 Scanning electrochemical microscopy (SECM)
80(1)
2.4.4 Atomic force microscopy (AFM)
80(4)
2.4.5 Near-field optical microscopy (NSOM)
84(3)
2.5 Low-energy electron diffraction (LEED)
87(7)
2.6 Electron Spectroscopy
94(15)
2.6.1 X-ray photoelectron spectroscopy (XPS)
94(5)
2.6.2 Ultraviolet photoelectron spectroscopy (UPS)
99(5)
2.6.3 Auger electron spectroscopy (AES)
104(4)
2.6.4 Photoelectron microscopy
108(1)
2.7 Vibrational spectroscopy
109(8)
2.7.1 IR spectroscopy
110(5)
2.7.2 Electron energy loss spectroscopy (EELS)
115(2)
2.8 Second harmonic and sum frequency generation
117(2)
2.9 Summary of important concepts
119(1)
2.10 Frontiers and challenges
120(1)
2.11 Further reading
120(1)
2.12 Exercises
121(4)
References
125(6)
3 Chemisorption, Physisorption, and Dynamics 131(74)
3.1 Types of interactions
131(2)
3.2 Binding sites and diffusion
133(3)
3.3 Physisorption
136(2)
3.4 Non-dissociative chemisorption
138(7)
3.4.1 Theoretical treatment of chemisorption
138(3)
3.4.2 The Blyholder model of CO chemisorption on a metal
141(2)
3.4.3 Molecular oxygen chemisorption
143(1)
3.4.4 The binding of ethene
144(1)
3.5 Dissociative chemisorption: H2 on a simple metal
145(2)
3.6 What determines the reactivity of metals?
147(3)
3.7 Atoms and molecules incident on a surface
150(12)
3.7.1 Scattering channels
150(2)
3.7.2 Non-activated adsorption
152(3)
3.7.3 Hard-cube model
155(2)
3.7.4 Activated adsorption
157(1)
3.7.5 Direct versus precursor-mediated adsorption
158(4)
3.8 Microscopic reversibility in ad/desorption phenomena
162(5)
3.9 The influence of individual degrees of freedom on adsorption and desorption
167(2)
3.9.1 Energy exchange
167(1)
3.9.2 PES topography and the relative efficacy of energetic components
168(1)
3.10 Translations, corrugation, surface-atom motions
169(5)
3.10.1 Effects on adsorption
169(2)
3.10.2 Connecting adsorption and desorption with microscopic reversibility
171(2)
3.10.3 Normal energy scaling
173(1)
3.11 Rotations and adsorption
174(2)
3.11.1 Non-activated adsorption
174(2)
3.11.2 Activated adsorption
176(1)
3.12 Vibrations and adsorption
176(1)
3.13 Competitive adsorption and collision-induced processes
177(3)
3.13.1 High energy collisions
179(1)
3.14 Classification of reaction mechanisms
180(3)
3.14.1 Langmuir-Hinshelwood mechanism
180(2)
3.14.2 Eley-Rideal mechanism
182(1)
3.14.3 Hot atom mechanism
183(2)
3.15 Measurement of sticking coefficients
185(3)
3.16 Summary of important concepts
188(1)
3.17 Frontiers and challenges
189(1)
3.18 Further reading
189(1)
3.19 Exercises
190(7)
References
197(8)
4 Thermodynamics and Kinetics of Adsorption and Desorption 205(54)
4.1 Thermodynamics of ad/desorption
205(8)
4.1.1 Single-particle versus distribution-averaged quantities
205(2)
4.1.2 Binding energies and activation barriers
207(2)
4.1.3 Thermodynamic quantities
209(1)
4.1.4 Some definitions
210(1)
4.1.5 Absorption enthalpy
211(2)
4.2 Adsorption isotherms from thermodynamics
213(5)
4.2.1 Adsorbate chemical potential and activity
216(2)
4.3 Lateral interactions
218(1)
4.4 Rate of desorption
219(12)
4.4.1 First-order desorption
219(1)
4.4.2 Transition state theory treatment of first-order desorption
220(4)
4.4.3 Thermodynamic treatment of first-order desorption
224(3)
4.4.4 Adsorption entropy
227(2)
4.4.5 Configurational entropy
229(1)
4.4.6 Non-first-order desorption
230(1)
4.5 Kinetics of adsorption
231(7)
4.5.1 CTST approach to adsorption kinetics
231(1)
4.5.2 Langmuirian adsorption: non-dissociative adsorption
231(3)
4.5.3 Langmuirian adsorption: dissociative adsorption
234(1)
4.5.4 Dissociative Langmuirian adsorption with lateral interactions
235(1)
4.5.5 Precursor-mediated adsorption
236(2)
4.6 Adsorption isotherms from kinetics
238(3)
4.6.1 Langmuir isotherm
238(1)
4.6.2 Classification of adsorption isotherms
239(2)
4.6.3 Thermodynamic measurements via isotherms
241(1)
4.7 Temperature programmed desorption (TPD)
241(8)
4.7.1 The basis of TPD
241(2)
4.7.2 Qualitative analysis of TPD spectra
243(3)
4.7.3 Quantitative analysis of TPD Spectra
246(3)
4.8 Summary of important concepts
249(1)
4.9 Frontiers and challenges
250(1)
4.10 Further reading
250(1)
4.11 Exercises
250(6)
References
256(3)
5 Liquid Interfaces 259(44)
5.1 Structure of the liquid/solid interface
259(5)
5.1.1 The Structure of the water/solid interface
261(3)
5.2 Surface energy and surface tension
264(6)
5.2.1 Liquid surfaces
264(3)
5.2.2 Curved interfaces
267(1)
5.2.3 Surface melting and surface crystallization
268(1)
5.2.4 Capillary waves
269(1)
5.3 Liquid films
270(2)
5.3.1 Liquid-on-solid films
270(2)
5.4 Langmuir films
272(2)
5.5 Langmuir-Blodgett films
274(5)
5.5.1 Capillary condensation and meniscus formation
275(2)
5.5.2 Vertical deposition
277(1)
5.5.3 Horizontal lifting (Schaefer's Method)
278(1)
5.6 Self-assembled monolayers (SAMs)
279(6)
5.6.1 Thermodynamics of self-assembly
280(1)
5.6.2 Amphiphiles and bonding interactions
281(1)
5.6.3 Mechanism of SAM formation
282(3)
5.7 Thermodynamics of liquid interfaces
285(4)
5.7.1 The Gibbs model
285(2)
5.7.2 Surface excess
287(1)
5.7.3 Interfacial enthalpy and internal, Helmholtz and Gibbs surface energies
287(1)
5.7.4 Gibbs adsorption isotherm
288(1)
5.8 Electrified and charged interfaces
289(5)
5.8.1 Surface charge and potential
289(3)
5.8.2 Relating work functions to the electrochemical series
292(2)
5.9 Summary of important concepts
294(1)
5.10 Frontiers and challenges
295(1)
5.11 Exercises
295(3)
5.12 Further reading
298(1)
References
298(5)
6 Heterogeneous Catalysis 303(52)
6.1 The prominence of heterogeneous reactions
303(2)
6.2 How to choose a catalyst
305(3)
6.3 Sabatier analysis and optimal catalyst selection
308(2)
6.4 Measurement of surface kinetics and reaction mechanisms
310(4)
6.5 Haber-Bosch process
314(5)
6.6 From microscopic kinetics to catalysis
319(8)
6.6.1 Reaction kinetics
319(1)
6.6.2 Kinetic analysis using De Donder relations
320(1)
6.6.3 Counting sites in surface kinetics
321(2)
6.6.4 Definition of the rate determining step (RDS)
323(1)
6.6.5 Microkinetic analysis of ammonia synthesis
324(3)
6.7 Fischer-Tropsch synthesis and related chemistry
327(4)
6.7.1 Steam reforming
327(1)
6.7.2 Water gas shift reaction
327(1)
6.7.3 Methanol synthesis
328(1)
6.7.4 Fischer-Tropsch synthesis
328(3)
6.8 The three-way automotive catalyst
331(3)
6.9 Promoters
334(1)
6.10 Poisons
335(1)
6.11 Bimetallic and bifunctional catalysts
336(2)
6.12 Rate oscillations and spatiotemporal pattern formation
338(2)
6.12.1 Advanced topic: cluster assembled catalysts
339(1)
6.13 Electrocatalysis
340(5)
6.13.1 Hydrogen evolution reaction (HER) and H2 oxidation reaction (HOR)
341(1)
6.13.2 Oxygen evolution reaction (OER) and O2 reduction reaction (ORR)
342(2)
6.13.3 Advanced topic: water splitting in photosystem II
344(1)
6.14 Summary of important concepts
345(1)
6.15 Frontiers and challenges
346(1)
6.16 Further reading
347(1)
6.17 Exercises
348(2)
References
350(5)
7 Growth and Epitaxy 355(62)
7.1 Stress and strain
355(3)
7.2 Types of interfaces
358(2)
7.2.1 Strain relief
358(2)
7.3 Surface energy, surface tension and strain energy
360(2)
7.4 Growth modes
362(6)
7.4.1 Solid-on-solid growth
362(2)
7.4.2 Strain in solid-on-solid growth
364(1)
7.4.3 Ostwald ripening
365(1)
7.4.4 Equilibrium overlayer structure and growth mode
366(2)
7.5 Nucleation theory
368(3)
7.5.1 Cloud formation: heterogeneous versus homogeneous nucleation
370(1)
7.6 Growth away from equilibrium
371(4)
7.6.1 Thermodynamics versus dynamics
371(1)
7.6.2 Non-equilibrium growth modes
372(3)
7.7 Techniques for growing layers
375(10)
7.7.1 Molecular beam epitaxy (MBE)
375(3)
7.7.2 Chemical vapour deposition (CVD)
378(4)
7.7.3 Atomic layer deposition (ALD)
382(1)
7.7.4 Ablation techniques
382(1)
7.7.5 Growth on liquid metals
383(1)
7.7.6 van der Waals epitaxy
383(2)
7.8 Catalytic growth of nanotubes and nanowires
385(4)
7.9 Etching
389(16)
7.9.1 Classification of etching
390(3)
7.9.2 Etch morphologies
393(1)
7.9.3 Porous solid formation
394(2)
7.9.4 Silicon etching in aqueous fluoride solutions
396(3)
7.9.5 Selective area growth and etching
399(2)
7.9.6 Atomic layer etching (ALE)
401(3)
7.9.7 Coal gasification and graphite etching
404(1)
7.10 Summary of important concepts
405(1)
7.11 Frontiers and challenges
406(1)
7.12 Further reading
407(1)
7.13 Exercises
407(3)
References
410(7)
8 Laser and Non-thermal Chemistry: Photon and Electron Stimulated Chemistry and Atom Manipulation 417(64)
8.1 Photon excitation of surfaces
418(12)
8.1.1 Light absorption by condensed matter
418(1)
8.1.2 Lattice heating
419(4)
8.1.3 Advanced topic: temporal evolution of electronic excitations
423(5)
8.1.4 Summary of laser excitations
428(1)
8.1.5 Plasmon excitation
428(2)
8.2 Mechanisms of electron and photon stimulated processes
430(7)
8.2.1 Direct versus substrate mediated processes
430(1)
8.2.2 Gas phase photochemistry
431(2)
8.2.3 Gas phase electron stimulated chemistry
433(1)
8.2.4 MGR and Antoniewicz models of DIET
434(2)
8.2.5 Desorption induced by ultrafast excitation
436(1)
8.3 Photon and electron induced chemistry at surfaces
437(13)
8.3.1 Thermal desorption, reaction, and diffusion
437(2)
8.3.2 Stimulated desorption/reaction
439(6)
8.3.3 Ablation
445(5)
8.4 Charge transfer and electrochemistry
450(14)
8.4.1 Homogeneous electron transfer
452(3)
8.4.2 Corrections to and improvements on Marcus theory
455(1)
8.4.3 Heterogeneous electron transfer
455(3)
8.4.4 Current flow at a metal electrode
458(2)
8.4.5 Advanced topic: semiconductor photoelectrodes and the Gratzel photovoltaic cell
460(4)
8.5 Tip- induced process: mechanisms of atom manipulation
464(5)
8.5.1 Electric field effects
464(1)
8.5.2 Tip-induced ESD
464(2)
8.5.3 Vibrational ladder climbing
466(1)
8.5.4 Pushing
467(1)
8.5.5 Pulling
468(1)
8.5.6 Atom manipulation by covalent forces
468(1)
8.6 Summary of important concepts
469(1)
8.7 Frontiers and challenges
470(1)
8.8 Further reading
470(1)
8.9 Exercises
471(3)
References
474(7)
Appendix A Abbreviations and Prefixes 481(4)
Appendix B Symbols 485(4)
Appendix C Useful Mathematical Expressions 489(4)
Index 493
Kurt W. Kolasinski, PhD, is Professor of Physical Chemistry at West Chester University. His research concentrates on the study of dynamical processes at the surfaces of metals and semiconductors with a special emphasis on structure formation and laser-surface interactions. He is responsible for teaching Theoretical and Experimental Physical Chemistry as well as Surface Science.