Atjaunināt sīkdatņu piekrišanu

Theory of Finslerian Laplacians and Applications 1998 ed. [Hardback]

Edited by , Edited by
  • Formāts: Hardback, 282 pages, height x width: 235x155 mm, weight: 1380 g, XXX, 282 p., 1 Hardback
  • Sērija : Mathematics and Its Applications 459
  • Izdošanas datums: 31-Oct-1998
  • Izdevniecība: Springer
  • ISBN-10: 0792353137
  • ISBN-13: 9780792353133
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 282 pages, height x width: 235x155 mm, weight: 1380 g, XXX, 282 p., 1 Hardback
  • Sērija : Mathematics and Its Applications 459
  • Izdošanas datums: 31-Oct-1998
  • Izdevniecība: Springer
  • ISBN-10: 0792353137
  • ISBN-13: 9780792353133
Citas grāmatas par šo tēmu:
Finslerian Laplacians have arisen from the demands of modelling the modern world. However, the roots of the Laplacian concept can be traced back to the sixteenth century. Its phylogeny and history are presented in the Prologue of this volume. The text proper begins with a brief introduction to stochastically derived Finslerian Laplacians, facilitated by applications in ecology, epidemiology and evolutionary biology. The mathematical ideas are then fully presented in section II, with generalizations to Lagrange geometry following in section III. With section IV, the focus abruptly shifts to the local mean-value approach to Finslerian Laplacians and a Hodge-de Rham theory is developed for the representation on real cohomology classes by harmonic forms on the base manifold. Similar results are proved in sections II and IV, each from different perspectives. Modern topics treated include nonlinear Laplacians, Bochner and Lichnerowicz vanishing theorems, Weitzenböck formulas, and Finslerian spinors and Dirac operators. The tools developed in this book will find uses in several areas of physics and engineering, but especially in the mechanics of inhomogeneous media, e.g. Cofferat continua. Audience: This text will be of use to workers in stochastic processes, differential geometry, nonlinear analysis, epidemiology, ecology and evolution, as well as physics of the solid state and continua.

Papildus informācija

Springer Book Archives
Prologue vii(18) Preface xxv SECTION I. Finsler Laplacians in Application 1(46) Introduction to Diffusions on Finsler Manifolds 1(12) P.L. Antonelli T.J. Zastawniak Density Dependent Host/Parasite Systems of Rothschild Type and Finslerian Diffusion 13(20) P.L. Antonelli T.J. Zastawniak Stochastic Finsler Geometry in the Theory of Evolution by Symbiosis 33(14) P.L. Antonelli T.J. Zastawniak SECTION II. Stochastic Analysis and Brownian Motion 47(64) Diffusions on Finsler Manifolds 47(16) P.L. Antonelli T.J. Zastawniak Stochastic Calculus on Finsler Manifolds and an Application in Biology 63(26) P.L. Antonelli T.J. Zastawniak Diffusion on the Tangent and Indicatrix Bundles of a Finsler Manifold 89(22) P.L. Antonelli T.J. Zastawniak SECTION III. Stochastic Lagrange Geometry 111(30) Diffusion on the Total Space of a Vector Bundle 111(12) D. Hrimiuc Diffusions and Laplacians on Lagrange Manifolds 123(10) P.L. Antonelli D. Hrimiuc XXX-Lagrange Laplacians 133(8) P.L. Antonelli D. Hrimiuc SECTION IV. Mean-Value Properties of Harmonic Functions 141(46) Diffusion, Laplacian and Hodge Decomposition on Finsler Spaces 141(10) P.L. Antonelli T.J. Zastawniak A Mean-Value Laplacian for Finsler Spaces 151(36) P. Centore SECTION V. Analytical Constructions 187 The Non-Linear Laplacian for Finsler Manifolds 187(12) Z. Shen A Bochner Vanishing Theorem for Elliptic Complices 199(28) B. Lackey A Lichnerowicz Vanishing Theorem for Finsler Spaces 227(18) B. Lackey A Geometric Inequality and a Weitzenbock Formula for Finsler Surfaces 245(32) D. Bao B. Lackey Spinors on Finsler Spaces 277 F.J. Flaherty