Atjaunināt sīkdatņu piekrišanu

Thermal Physics of the Atmosphere 2nd edition, Volume 1 [Mīkstie vāki]

(Department of Meteorology, University of Reading, UK)
  • Formāts: Paperback / softback, 268 pages, height x width: 235x191 mm, weight: 540 g
  • Sērija : Developments in Weather and Climate Science
  • Izdošanas datums: 18-Nov-2020
  • Izdevniecība: Butterworth-Heinemann Ltd
  • ISBN-10: 0128244984
  • ISBN-13: 9780128244982
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 130,13 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 268 pages, height x width: 235x191 mm, weight: 540 g
  • Sērija : Developments in Weather and Climate Science
  • Izdošanas datums: 18-Nov-2020
  • Izdevniecība: Butterworth-Heinemann Ltd
  • ISBN-10: 0128244984
  • ISBN-13: 9780128244982
Citas grāmatas par šo tēmu:

Thermal Physics of the Atmosphere, Second Edition offers a concise and thorough introduction on how basic thermodynamics naturally leads to advanced topics in atmospheric physics. Chapters cover the basics of thermodynamics and its applications in atmospheric science and describe major applications, specifically more specialized areas of atmospheric physics, including vertical structure and stability, cloud formation and radiative processes. The book is fully revised, featuring informative sections on radiative transfer, thermodynamic cycles, the historical context to potential temperature concept, vertical thermodynamic coordinates, dewpoint temperature, the Penman equation, and entropy of moist air.

This book is a necessary guide for students (graduate, advanced undergraduate, master’s level) of atmospheric science, meteorology, climate science and researchers in these fields.

  • Introduces a wide range of areas associated with atmospheric physics
  • Ideally suited for readers with a general physics background
  • Includes self-assessment questions in each chapter
Preface ix
Chapter 1 Ideal gases
1(16)
1.1 Thermodynamic variables
1(5)
1.2 Microscopic viewpoint
6(5)
1.3 Ideal gas mixtures
11(3)
Problems
14(3)
Chapter 2 The first and second laws
17(22)
2.1 Work
17(3)
2.2 Energy conservation: the first law
20(2)
2.3 Entropy and the second law
22(5)
2.4 Thermodynamic heat engines
27(3)
2.5 Boltzmann entropy
30(2)
2.6 Entropy and probability: a macroscopic example
32(4)
Problems
36(3)
Chapter 3 General applications
39(26)
3.1 Thermodynamic potentials
39(4)
3.2 Heat capacity
43(3)
3.3 Properties of ideal gases
46(4)
3.4 Potential temperature
50(3)
3.5 Open systems: enthalpy flux
53(2)
3.6 Latent heat
55(2)
3.7 Turbulent energy fluxes
57(2)
3.8 Van der Waals' gases
59(3)
Problems
62(3)
Chapter 4 The atmosphere under gravity
65(26)
4.1 Geopotential
65(2)
4.2 Hydrostatic balance
67(5)
4.3 Adiabatic lapse rate
72(3)
4.4 Buoyancy
75(3)
4.5 Dry static energy and Bernoulli function
78(2)
4.6 Vertical coordinates
80(2)
4.7 Statistical mechanics
82(5)
Problems
87(4)
Chapter 5 Water in the atmosphere
91(24)
5.1 The Clausius--Clapeyron equation
92(3)
5.2 Calculation of saturated vapour pressure
95(6)
5.3 Humidity variables
101(1)
5.4 Dewpoint temperature
102(2)
5.5 Wet-bulb temperature
104(2)
5.6 Moist static energy
106(3)
5.7 The Penman equation
109(3)
Problems
112(3)
Chapter 6 Vertical structure of the moist atmosphere
115(18)
6.1 Adiabatic lapse rate for moist air
115(3)
6.2 Entropy of moist air
118(6)
6.3 Finite amplitude instabilities
124(1)
6.4 Vertical structure in thermodynamic diagrams
125(5)
6.5 Convective available potential energy
130(2)
Problems
132(1)
Chapter 7 Cloud drops
133(28)
7.1 Homogeneous nucleation: the Kelvin effect
133(5)
7.2 Heterogeneous nucleation: the Raoult effect
138(2)
7.3 Kohler theory
140(4)
7.4 Charge-enhanced nucleation
144(4)
7.5 Drop growth by diffusion
148(8)
7.6 Drop growth by collision and coalescence
156(2)
Problems
158(3)
Chapter 8 Mixtures and solutions
161(16)
8.1 Chemical potentials
161(3)
8.2 Ideal gas mixtures and ideal solutions
164(2)
8.3 Raoult's law revisited
166(2)
8.4 Boiling and freezing of solutions
168(2)
8.5 Affinity and chemical equilibrium
170(4)
Problems
174(3)
Chapter 9 Thermal radiation
177(28)
9.1 Thermal radiation and Kirchhoff's law
177(3)
9.2 The Stefan--Boltzmann and Wien displacement laws
180(2)
9.3 Global energy budget and the greenhouse effect
182(4)
9.4 Climate feedbacks and the hydrological cycle
186(3)
9.5 Thermodynamics of a photon gas
189(4)
9.6 Derivation of the Planck law
193(5)
9.7 Energy flux, and the Stefan-Boltzmann integral
198(4)
Problems
202(3)
Chapter 10 Radiative transfer
205(18)
10.1 Radiative intensity
205(2)
10.2 Radiative transfer
207(4)
10.3 Zenith angles
211(3)
10.4 Radiative-convective equilibrium
214(6)
10.5 Optically thin layers
220(2)
Problems
222(1)
Chapter 11 Non-equilibrium processes
223(18)
11.1 Energetics of motion
223(5)
11.2 Diabatic effects and the second law
228(4)
11.3 Thermodynamics of forced dissipative systems
232(2)
11.4 Climate thermodynamics
234(6)
Problems
240(1)
Appendix A Functions of several variables 241(2)
Appendix B Thermodynamic diagrams 243(6)
Index 249(8)
Useful data 257
Maarten Ambaum is professor of atmospheric physics and dynamics at the Department of Meteorology at the University of Reading, United Kingdom. He holds a degree in theoretical physics from the University of Utrecht, and a PhD from the Eindhoven University of Technology in the Netherlands. He has published on a wide range of topics in atmospheric science and fluid dynamics. He was on the editorial boards of the Journal of the Climate and the Quarterly Journal of the Royal Meteorological Society.