Atjaunināt sīkdatņu piekrišanu

Third-Generation and Wideband HF Radio Communications Unabridged edition [Hardback]

  • Formāts: Hardback, 272 pages
  • Izdošanas datums: 31-Oct-2012
  • Izdevniecība: Artech House Publishers
  • ISBN-10: 1608075036
  • ISBN-13: 9781608075034
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 157,45 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 272 pages
  • Izdošanas datums: 31-Oct-2012
  • Izdevniecība: Artech House Publishers
  • ISBN-10: 1608075036
  • ISBN-13: 9781608075034
Citas grāmatas par šo tēmu:
Written by the developers of the new 21st century HF (high frequency) radio technology, this groundbreaking resource presents the powerful new capabilities and technical details of 3G and WBHF (wideband high frequency) waveforms to help professionals understand and use the ionospheric channel for video and high-speed data transmission. Featuring more than 180 illustrations, this practical book enables engineers to utilize this technology to communicate voice and data over the horizon without needing anyone else's infrastructure, send video beyond line of sight from moving platforms, and communicate over long ranges at such low power that it is nearly undetectable. Readers learn the rationale behind the new US and NATO standards for HF radio communications directly from their developers. Additionally, the book looks at the future direction of this technology area and the open problems requiring further research.
Preface ix
Chapter 1 HF Radio
1(6)
1.1 HF Radio Transmissions
2(2)
1.2 HF Antennas
4(1)
1.2.1 Transmitting Antennas
4(1)
1.2.2 Receiving Antennas
5(1)
1.2.3 Antenna Polarization
5(1)
1.3 HF Radio in the Computer Age
5(1)
1.4 Summary
6(1)
References
6(1)
Chapter 2 The HF Channel
7(16)
2.1 Surface-Wave Propagation
7(1)
2.2 Skywave Propagation
8(5)
2.2.1 The Ionosphere
8(2)
2.2.2 Ionospheric Propagation
10(1)
2.2.3 Near Vertical Incidence Skywave
11(1)
2.2.4 Skywave Fading
12(1)
2.3 Noise in the High-Frequency Band
13(1)
2.4 Models of the HF Communication Channel
14(6)
2.4.1 Propagation Prediction
14(2)
2.4.2 The Watterson Model
16(2)
2.4.3 Midterm Variation
18(2)
2.5 Summary
20(3)
References
20(3)
Chapter 3 Data Transmission in 3-kHz Channels
23(40)
3.1 Introduction
23(1)
3.2 Data Waveforms
24(23)
3.2.1 Design Space
24(9)
3.2.2 PSK Serial-Tone Waveforms
33(9)
3.2.3 MIL-STD-188-110B and STANAG 4539
42(5)
3.3 ARQ for HF Radio Data Links
47(8)
3.3.1 Introduction to ARQ Protocols for HF Radio Links
47(1)
3.3.2 FED-STD-1052
48(2)
3.3.3 STANAG 5066
50(5)
3.4 Channel Sharing
55(8)
3.4.1 Media Access Control Options
55(4)
3.4.2 HF Token Protocol
59(1)
References
60(3)
Chapter 4 Automatic Link Establishment
63(24)
4.1 Introduction
64(2)
4.2 ALE Signal Structure
66(5)
4.2.1 ALE Modem
66(1)
4.2.2 ALE Word
67(1)
4.2.3 Forward Error Correction
67(4)
4.3 ALE Addressing
71(1)
4.4 Automatic Channel Selection
72(2)
4.4.1 Scanning
73(1)
4.4.2 Sounding
73(1)
4.4.3 Link Quality Analysis
74(1)
4.5 ALE Protocols
74(6)
4.5.1 Frame Structure
75(1)
4.5.2 Individual Calling Protocol
75(2)
4.5.3 Net Calling Protocol
77(1)
4.5.4 Group Calling Protocol
77(1)
4.5.5 Other One-to-Many Calling Protocols
78(1)
4.5.6 Timing
78(1)
4.5.7 ALE Performance Requirements
79(1)
4.5.8 Orderwire Functions
79(1)
4.6 Linking Protection
80(7)
4.6.1 Requirements
80(1)
4.6.2 LP Technique
81(2)
4.6.3 Application Levels and Algorithms
83(1)
4.6.4 Time Synchronization
83(2)
References
85(2)
Chapter 5 Third-Generation Technology
87(100)
5.1 Introduction to the 3G HF Technology Suite
88(2)
5.2 Burst Waveforms
90(8)
5.2.1 Generic Structure of the Burst Waveforms
90(2)
5.2.2 Burst Waveform 0 (BW0)
92(1)
5.2.3 Burst Waveform 1 (BW1)
92(2)
5.2.4 Burst Waveform 2 (BW2)
94(2)
5.2.5 Burst Waveform 3 (BW3)
96(1)
5.2.6 Burst Waveform 4 (BW4)
97(1)
5.2.7 Burst Waveform 5 (BW5)
97(1)
5.3 Third-Generation Automatic Link Establishment
98(40)
5.3.1 Synchronous Operation
100(2)
5.3.2 3G Frequency Management
102(1)
5.3.3 3G-ALE Addressing
102(1)
5.3.4 Fast Link Setup
103(15)
5.3.5 Robust Link Setup
118(15)
5.3.6 3G ALE Performance
133(5)
5.4 Traffic Management
138(3)
5.4.1 TM PDUs
139(1)
5.4.2 TM Protocol Operation
140(1)
5.5 Data Transfer
141(20)
5.5.1 3G Data Link Protocols: A New Approach
142(1)
5.5.2 LDL: Low-Latency Data Link Protocol
143(3)
5.5.3 High-Throughput Data Link Protocol
146(4)
5.5.4 HDL+ Data Link Protocol
150(2)
5.5.5 3G Data Link Performance
152(9)
5.6 Automatic Link Maintenance
161(4)
5.6.1 ALM PDUs
162(1)
5.6.2 ALM Protocol Operations
162(3)
5.7 3G Multicasting
165(11)
5.7.1 Introduction
165(1)
5.7.2 P_MUL
166(2)
5.7.3 MDL
168(7)
5.7.4 MDLN Protocol
175(1)
5.7.5 Conclusion
176(1)
5.8 3G Performance in Internet Applications
176(6)
5.8.1 Characteristics of Internet Applications
176(3)
5.8.2 Interaction of Internet Protocols with HF Data Links
179(3)
5.9 Field Testing
182(1)
5.10 Summary of 3G HF Technology
183(4)
References
184(3)
Chapter 6 Wideband HF
187(44)
6.1 Introduction
187(1)
6.2 The Need for Higher Data Rates
188(1)
6.2.1 Large Files to Fast Movers
188(1)
6.2.2 Surveillance Video
188(1)
6.2.3 Common Operating Picture (Surface-Wave)
189(1)
6.3 Achieving Higher Data Rates
189(5)
6.3.1 3-kHz Waveforms
190(1)
6.3.2 Multichannel Waveforms
191(2)
6.3.3 Wider Contiguous Bandwidth Waveforms
193(1)
6.3.4 Best Approach for WBHF
194(1)
6.4 Standardization of Wideband HF Technology in the United States
194(13)
6.4.1 Design Goals
194(2)
6.4.2 WBHF Waveform Design
196(1)
6.4.3 WBHF Data Modulations
197(3)
6.4.4 Synchronization Preamble
200(2)
6.4.5 Data Blocks and Miniprobes
202(1)
6.4.6 Interleaving
203(2)
6.4.7 FEC
205(2)
6.4.8 Standardized Feature Packages
207(1)
6.4.9 WBHF Performance Requirements
207(1)
6.5 WBHF Application Performance
207(7)
6.5.1 Estimated Application Performance: File Transfer
208(2)
6.5.2 Estimated Application Performance: Video Over HF Skywave
210(2)
6.5.3 Estimated Application Performance: Common Operating Picture
212(2)
6.5.4 Robust Voice Communications
214(1)
6.6 On-Air Testing
214(12)
6.6.1 Harris On-Air Testing
214(4)
6.6.2 Rockwell-Collins On-Air Testing
218(8)
6.7 Operational Considerations
226(5)
References
228(3)
Chapter 7 Future Directions
231(10)
7.1 Wideband ALE
231(7)
7.1.1 Wideband ALE Design Considerations
231(1)
7.1.2 A Conceptual WBALE System
232(2)
7.1.3 Spectrum "Sense and Avoid" Demonstrated
234(1)
7.1.4 A "Hybrid Simulation" Experiment
235(2)
7.1.5 WBALE Summary
237(1)
7.2 Staring ALE
238(3)
References
238(3)
Acronyms and Abbreviations 241(4)
About the Authors 245(2)
Index 247
Eric Koski is the senior principal engineer at Harris Corporation in Rochester, New York. He Holds a B.A. in computer science from the University of Rochester and an M.A. in Philosophy from the University of Illinois at Urbana-Champaign. William N. Furman is a senior scientist and head of the Advanced Signal Processing Group at Harris Corporation in Rochester, New York. He holds a B.S. and M.E. in electrical engineering from Rensselaer Polytechnic Institute in Troy, New York. Mark Jorgenson works for Rockwell Collins, where he focuses on problems with high frequency and other bands. He holds a B.Sc. and M.Sc. in electrical engineering, both from the University of Calgary. John Nieto is a senior scientist in the Advanced Signal Processing Group at Harris Corporation in Rochester, New York. He holds a B.S. and an M.S. in electrical engineering, both from the University of Missouri-Rolla.