Atjaunināt sīkdatņu piekrišanu

E-grāmata: Transferring Human Impedance Regulation Skills to Robots

  • Formāts: PDF+DRM
  • Sērija : Springer Tracts in Advanced Robotics 110
  • Izdošanas datums: 05-Nov-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319242057
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Springer Tracts in Advanced Robotics 110
  • Izdošanas datums: 05-Nov-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319242057

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book introduces novel thinking and techniques to the control of robotic manipulation. In particular, the concept of teleimpedance control as an alternative method to bilateral force-reflecting teleoperation control for robotic manipulation is introduced. In teleimpedance control, a compound reference command is sent to the slave robot including both the desired motion trajectory and impedance profile, which are then realized by the remote controller. This concept forms a basis for the development of the controllers for a robotic arm, a dual-arm setup, a synergy-driven robotic hand, and a compliant exoskeleton for improved interaction performance.

1 Introduction
1(8)
1.1 Motivation
1(2)
1.2 Contributions
3(1)
1.3 Outline
4(5)
1.3.1 Outline of Part I
4(1)
1.3.2 Outline of Part II
5(1)
1.3.3 Outline of Part III
6(1)
1.3.4 Outline of Part IV
7(2)
2 On the Role of Compliance and Geometry in Mechanical Stability of the Humans and Robots
9(10)
2.1 Stability in Human-Environment Interactions
9(3)
2.2 Compliant Behavior in Robots
12(3)
2.2.1 Compliant Mechanisms
12(2)
2.2.2 Compliance Control
14(1)
2.3 Redundancy Resolution and Its Application to Impedance Control
15(4)
Part I Teleimpedance Control of a Robotic Arm
3 Teleimpedance: Teleoperation with Impedance Regulation Using a Body-Machine Interface
19(14)
3.1 Human Arm Impedance Modeling in 3D
22(3)
3.2 Stiffness Model Calibration/Identification
25(8)
3.2.1 Identification of the EMG-to-Force Map
27(1)
3.2.2 Identification of the EMG-to-Stiffness Map
27(3)
3.2.3 Identification Results
30(3)
4 Replicating Human Stiffness Profile with a Cartesian Impedance Controller in Realtime
33(14)
4.1 Cartesian Impedance Control
33(2)
4.2 Teleimpedance: Peg-in-Hole Task
35(5)
4.2.1 Experimental Results
37(3)
4.3 Teleimpedance: Ball-Catching Task
40(4)
4.3.1 Experimental Results
41(3)
4.4 Conclusions
44(3)
5 Exploring the Roles of Common Mode Stiffness (CMS) and Configuration Dependent Stiffness (CDS) Control
47(14)
5.1 Controller Design
48(5)
5.1.1 CMS-CDS Controller
48(4)
5.1.2 Minimum-Effort Controller
52(1)
5.1.3 Soft Switching Logic
52(1)
5.2 Experiments
53(5)
5.3 Conclusions
58(3)
Part II Human-like Impedance Control of a Dual-Arm Manipulator
6 Natural Redundancy Resolution in Dual-Arm Manipulation Using CDS Control
61(16)
6.1 Controller Design
63(6)
6.1.1 Dual-Arm Kinematics
63(1)
6.1.2 Impedance Control of Dual-Arm
64(4)
6.1.3 Task Prioritization
68(1)
6.2 Experimental Setup
69(1)
6.3 Results
69(4)
6.4 Conclusions
73(4)
Part III Teleimpedance Control of a Robotic Hand
7 A Synergy-Driven Approach to a Myoelectric Hand
77(14)
7.1 Materials and Methods
78(7)
7.1.1 Overall Study Design
78(1)
7.1.2 The Pisa/IIT SoftHand
79(3)
7.1.3 Testing
82(1)
7.1.4 EMG Processing
82(1)
7.1.5 Control Architecture
83(1)
7.1.6 Questionnaire
84(1)
7.1.7 Data Analysis
85(1)
7.2 Results
85(3)
7.3 Conclusions
88(3)
8 Exploring Teleimpedance and Tactile Feedback for Intuitive Control of the Pisa/IIT SoftHand
91(28)
8.1 Human-SoftHand Interface
93(1)
8.2 Interaction Torque Observer
94(3)
8.3 Tactile Interfaces
97(5)
8.3.1 Mechano-Tactile Feedback
97(1)
8.3.2 Vibro-Tactile Feedback
98(2)
8.3.3 Texture Rendering and Psychophysical Considerations
100(2)
8.4 Control Architecture
102(1)
8.5 Experimental Setup
103(4)
8.5.1 Grasping Experiments
104(1)
8.5.2 Haptic Experiments
104(3)
8.6 Results
107(7)
8.6.1 Interaction Torque Observer
107(1)
8.6.2 Grasping Experiments
107(5)
8.6.3 Haptic Experiments
112(2)
8.7 Discussion
114(5)
Part IV Teleimpedance Control of a Compliant Knee Exoskeleton
9 Teleimpedance Based Assistive Control for a Compliant Knee Exoskeleton
119(20)
9.1 Musculoskeletal Model of the Knee Joint
120(4)
9.1.1 Activation Dynamics
121(1)
9.1.2 Contraction Dynamics
122(1)
9.1.3 Musculoskeletal Geometry
123(1)
9.2 Model Identification-Calibration
124(2)
9.2.1 Model Identification Experiments
124(1)
9.2.2 Model Validation
125(1)
9.3 Knee Exoskeleton Hardware
126(3)
9.3.1 Mechatronic System
127(2)
9.4 Teleimpedance Based Assistive Control
129(2)
9.5 The Human-Exoskeleton System Dynamics for the Standing-Up Motion
131(5)
9.5.1 System Modeling and Simulation
131(2)
9.5.2 Stability and Performance Analysis
133(3)
9.6 Experimental Results
136(2)
9.7 Conclusion
138(1)
10 Human-Inspired Balancing Assistance: Application to a Knee Exoskeleton
139(14)
10.1 Model-Based Joint Stiffness Estimation
140(4)
10.1.1 EMG-Driven Musculoskeletal Model Description
140(1)
10.1.2 Adjusting the Musculoskeletal Model Parameters
141(3)
10.2 Human Balancing Experiment
144(3)
10.2.1 Description of the Experimental Setup
144(1)
10.2.2 Data Analysis
145(2)
10.3 Balancing Assistance Control
147(1)
10.4 Knee Exoskeleton Application
148(3)
10.5 Conclusions
151(2)
11 Conclusions
153(2)
Bibliography 155