Atjaunināt sīkdatņu piekrišanu

E-grāmata: Wineinformatics: A New Data Science Application

  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Wineinformatics is a new data science application with a focus on understanding wine through artificial intelligence. Thousands of new wine reviews are produced monthly, which benefits the understanding of wine through wine experts for winemakers and consumers. This book systematically investigates how to process human language format reviews and mine useful knowledge from a large volume of processed data.





This book presents a human language processing tool named Computational Wine Wheel to process professional wine reviews and three novel Wineinformatics studies to analyze wine quality, price and reviewers. Through the lens of data science, the author demonstrates how the wine receives 90+ scores out of 100 points from Wine Spectator, how to predict a wines specific grade and price through wine reviews and how to rank a group of wine reviewers. The book also shows the advanced application of the Computational Wine Wheel to capture more information hidden in wine reviews and the possibility of extending the wheel to coffee, tea beer, sake and liquors.





This book targets computer scientists, data scientists and wine industrial researchers, who are interested in Wineinformatics. Senior data science undergraduate and graduate students may also benefit from this book.

Bernard Chen is currently a full professor and undergraduate coordinator of computer science department at University of Central Arkansas. He received his Ph.D. degree in computer science with bioinformatics concentration from Georgia State University in 2008. He is currently a full professor and undergraduate coordinator at the same department. He is the author or coauthor of approximately 80 papers in various interdisciplinary studies. In 2014, compared with existing data mining studies in wine works on approximately 100 wines at a time, he proposed a new data science application named Wineinformatics to analyze tens of thousands of wines through artificial intelligence. Since then, he has published eight journals and nine conference peer-reviewed papers directly related to Wineinformatics. He currently serves as a guest editor in the journal Fermentation for a special issue titled Machine Learning in Fermented Food and Beverages.