Update cookies preferences

E-book: Applied Probability

  • Format: PDF+DRM
  • Series: Springer Texts in Statistics
  • Pub. Date: 06-Dec-2024
  • Publisher: Springer-Verlag New York Inc.
  • Language: eng
  • ISBN-13: 9781071641729
  • Format - PDF+DRM
  • Price: 148,19 €*
  • * the price is final i.e. no additional discount will apply
  • Add to basket
  • Add to Wishlist
  • This ebook is for personal use only. E-Books are non-refundable.
  • Format: PDF+DRM
  • Series: Springer Texts in Statistics
  • Pub. Date: 06-Dec-2024
  • Publisher: Springer-Verlag New York Inc.
  • Language: eng
  • ISBN-13: 9781071641729

DRM restrictions

  • Copying (copy/paste):

    not allowed

  • Printing:

    not allowed

  • Usage:

    Digital Rights Management (DRM)
    The publisher has supplied this book in encrypted form, which means that you need to install free software in order to unlock and read it.  To read this e-book you have to create Adobe ID More info here. Ebook can be read and downloaded up to 6 devices (single user with the same Adobe ID).

    Required software
    To read this ebook on a mobile device (phone or tablet) you'll need to install this free app: PocketBook Reader (iOS / Android)

    To download and read this eBook on a PC or Mac you need Adobe Digital Editions (This is a free app specially developed for eBooks. It's not the same as Adobe Reader, which you probably already have on your computer.)

    You can't read this ebook with Amazon Kindle

Applied Probability presents a unique blend of theory and applications, with special emphasis on mathematical modeling, computational techniques, and examples from the biological sciences. Chapter 1 reviews elementary probability and provides a brief survey of relevant results from measure theory.  Chapter 2 is an extended essay on calculating expectations. Chapter 3 deals with probabilistic applications of convexity, inequalities, and optimization theory. Chapters 4 and 5 touch on combinatorics and combinatorial optimization. Chapters 6 through 11 present core material on stochastic processes.





If supplemented with appropriate sections from Chapters 1 and 2, there is sufficient material for a traditional semester-long course in stochastic processes covering the basics of Poisson processes, Markov chains, branching processes, martingales, and diffusion processes. This third edition includes new topics and many worked exercises. The new chapter on entropy stresses Shannon entropy and its mathematical applications. New sections in existing chapters explain the Chinese restaurant problem, the infinite alleles model, saddlepoint approximations,  and recurrence relations. The extensive list of new problems pursues topics such as random graph theory omitted in the previous editions. Computational probability receives even greater emphasis than earlier.  Some of the solved problems are coding exercises, and Julia code is provided.





Mathematical scientists from a variety of backgrounds will find Applied Probability appealing as a reference. This updated edition can serve as a textbook for graduate students in applied mathematics, biostatistics, computational biology, computer science, physics, and statistics. Readers should have a working knowledge of multivariate calculus, linear algebra, ordinary differential equations, and elementary probability theory.

Basic Notions of Probability Theory.- Calculation of Expectations.- Convexity, Optimization, and Inequalities.- Combinatorics.- Combinatorial Optimization.- Poisson Processes.- Discrete-Time Markov Chains.- Continuous-Time Markov Chains.- Branching Processes.- Martingales.- Diffusion Processes.- Asymptotic Methods.- Numerical Methods.- Poisson Approximation.- Number Theory.- Entropy.- Appendix: Mathematical Review.

Kenneth Lange is the Rosenfeld Professor of Computational Genetics in the Departments of Computational Medicine, Human Genetics, and Statistics at the University of California, Los Angeles. He served as chair of the UCLA Department of Computational Medicine for 9 years and as chair of the UCLA Department of Human Genetics for 12 years. He has authored five other books, including Mathematical and Statistical Methods for Genetic Analysis (Springer, 2002), Numerical Analysis for Statisticians (Springer, 2010) and Optimization (Springer, 2013). In 2021 he was elected to the National Academy of Sciences.