Preface |
|
xxv | |
|
Part I The Context of Database Management |
|
|
1 | (50) |
|
|
1 | (1) |
|
Chapter 1 The Database Environment and Development Process |
|
|
2 | (49) |
|
|
2 | (1) |
|
|
2 | (1) |
|
|
3 | (2) |
|
Basic Concepts and Definitions |
|
|
5 | (2) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
Traditional File Processing Systems |
|
|
7 | (2) |
|
File Processing Systems at Pine Valley Furniture Company |
|
|
8 | (1) |
|
Disadvantages of File Processing Systems |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
Lengthy Development Times |
|
|
9 | (1) |
|
Excessive Program Maintenance |
|
|
9 | (1) |
|
|
9 | (6) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
Database Management Systems |
|
|
11 | (1) |
|
Advantages of the Database Approach |
|
|
11 | (1) |
|
Program-Data Independence |
|
|
11 | (1) |
|
|
12 | (1) |
|
Improved Data Consistency |
|
|
12 | (1) |
|
|
12 | (1) |
|
Increased Productivity of Application Development |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
Improved Data Accessibility and Responsiveness |
|
|
14 | (1) |
|
Reduced Program Maintenance |
|
|
14 | (1) |
|
Improved Decision Support |
|
|
14 | (1) |
|
Cautions About Database Benefits |
|
|
14 | (1) |
|
Costs and Risks of the Database Approach |
|
|
14 | (1) |
|
New, Specialized Personnel |
|
|
15 | (1) |
|
Installation and Management Cost and Complexity |
|
|
15 | (1) |
|
|
15 | (1) |
|
Need for Explicit Backup and Recovery |
|
|
15 | (1) |
|
|
15 | (1) |
|
Components of the Database Environment |
|
|
15 | (2) |
|
The Database Development Process |
|
|
17 | (7) |
|
Systems Development Life Cycle |
|
|
18 | (1) |
|
Planning---Enterprise Modeling |
|
|
18 | (1) |
|
Planning---Conceptual Data Modeling |
|
|
18 | (1) |
|
Analysis---Conceptual Data Modeling |
|
|
18 | (1) |
|
Design---Logical Database Design |
|
|
19 | (1) |
|
Design---Physical Database Design and Definition |
|
|
20 | (1) |
|
Implementation---Database Implementation |
|
|
20 | (1) |
|
Maintenance---Database Maintenance |
|
|
20 | (1) |
|
Alternative Information Systems (IS) Development Approaches |
|
|
21 | (1) |
|
Three-Schema Architecture for Database Development |
|
|
22 | (2) |
|
Managing the People Involved in Database Development |
|
|
24 | (1) |
|
Evolution of Database Systems |
|
|
24 | (3) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
The Range of Database Applications |
|
|
27 | (4) |
|
|
28 | (1) |
|
Multitier Client/Server Databases |
|
|
28 | (1) |
|
|
29 | (2) |
|
Developing a Database Application for Pine Valley Furniture Company |
|
|
31 | (20) |
|
Database Evolution at Pine Valley Furniture Company |
|
|
32 | (1) |
|
|
33 | (1) |
|
Analyzing Database Requirements |
|
|
34 | (2) |
|
|
36 | (3) |
|
|
39 | (1) |
|
Administering the Database |
|
|
40 | (1) |
|
Future of Databases at Pine Valley |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (2) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
Case: Forondo Artist Management Excellence Inc. |
|
|
48 | (3) |
|
Part II Database Analysis |
|
|
51 | (102) |
|
|
51 | (2) |
|
Chapter 2 Modeling Data in the Organization |
|
|
53 | (61) |
|
|
53 | (1) |
|
|
53 | (3) |
|
The E-R Model: An Overview |
|
|
56 | (3) |
|
|
56 | (2) |
|
|
58 | (1) |
|
Modeling the Rules of the Organization |
|
|
59 | (6) |
|
Overview of Business Rules |
|
|
60 | (1) |
|
The Business Rules Paradigm |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
Data Names and Definitions |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (2) |
|
Modeling Entities and Attributes |
|
|
65 | (9) |
|
|
65 | (1) |
|
Entity Type Versus Entity Instance |
|
|
65 | (1) |
|
Entity Type Versus System Input, Output, or User |
|
|
65 | (1) |
|
Strong Versus Weak Entity Types |
|
|
66 | (1) |
|
Naming and Defining Entity Types |
|
|
67 | (2) |
|
|
69 | (1) |
|
Required Versus Optional Attributes |
|
|
69 | (1) |
|
Simple Versus Composite Attributes |
|
|
70 | (1) |
|
Single-Valued Versus Multivalued Attributes |
|
|
70 | (1) |
|
Stored Versus Derived Attributes |
|
|
71 | (1) |
|
|
71 | (1) |
|
Naming and Defining Attributes |
|
|
72 | (2) |
|
|
74 | (18) |
|
Basic Concepts and Definitions in Relationships |
|
|
75 | (1) |
|
Attributes on Relationships |
|
|
76 | (1) |
|
|
76 | (2) |
|
|
78 | (1) |
|
|
78 | (2) |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
82 | (2) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
Some Examples of Relationships and Their Cardinalities |
|
|
85 | (1) |
|
|
86 | (1) |
|
Modeling Time-Dependent Data |
|
|
86 | (3) |
|
Modeling Multiple Relationships Between Entity Types |
|
|
89 | (1) |
|
Naming and Defining Relationships |
|
|
90 | (2) |
|
E-R Modeling Example: Pine Valley Furniture Company |
|
|
92 | (2) |
|
Database Processing at Pine Valley Furniture |
|
|
94 | (20) |
|
Showing Product Information |
|
|
95 | (1) |
|
Showing Product Line Information |
|
|
95 | (1) |
|
Showing Customer Order Status |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
99 | (1) |
|
|
100 | (10) |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
111 | (1) |
|
Case: Forondo Artist Management Excellence Inc. |
|
|
112 | (2) |
|
Chapter 3 The Enhanced E-R Model |
|
|
114 | (39) |
|
|
114 | (1) |
|
|
114 | (1) |
|
Representing Supertypes and Subtypes |
|
|
115 | (7) |
|
Basic Concepts and Notation |
|
|
116 | (1) |
|
An Example of a Supertype/Subtype Relationship |
|
|
117 | (1) |
|
|
118 | (1) |
|
When to Use Supertype/Subtype Relationships |
|
|
118 | (1) |
|
Representing Specialization and Generalization |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
Combining Specialization and Generalization |
|
|
121 | (1) |
|
Specifying Constraints in Supertype/Subtype Relationships |
|
|
122 | (6) |
|
Specifying Completeness Constraints |
|
|
122 | (1) |
|
Total Specialization Rule |
|
|
122 | (1) |
|
Partial Specialization Rule |
|
|
122 | (1) |
|
Specifying Disjointness Constraints |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
123 | (1) |
|
Defining Subtype Discriminators |
|
|
124 | (1) |
|
|
124 | (1) |
|
|
125 | (1) |
|
Defining Supertype/Subtype Hierarchies |
|
|
125 | (1) |
|
An Example of a Supertype/Subtype Hierarchy |
|
|
126 | (1) |
|
Summary of Supertype/Subtype Hierarchies |
|
|
127 | (1) |
|
EER Modeling Example: Pine Valley Furniture Company |
|
|
128 | (3) |
|
|
131 | (3) |
|
|
134 | (19) |
|
A Revised Data Modeling Process with Packaged Data Models |
|
|
136 | (2) |
|
Packaged Data Model Examples |
|
|
138 | (5) |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
144 | (1) |
|
|
145 | (3) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
149 | (1) |
|
Case: Forondo Artist Management Excellence Inc. |
|
|
150 | (3) |
|
|
153 | (88) |
|
An Overview of Part Three |
|
|
153 | (2) |
|
Chapter 4 Logical Database Design and the Relational Model |
|
|
155 | (51) |
|
|
155 | (1) |
|
|
155 | (1) |
|
The Relational Data Model |
|
|
156 | (4) |
|
|
156 | (1) |
|
Relational Data Structure |
|
|
157 | (1) |
|
|
157 | (1) |
|
|
158 | (1) |
|
Removing Multivalued Attributes from Tables |
|
|
158 | (1) |
|
|
158 | (2) |
|
|
160 | (5) |
|
|
160 | (1) |
|
|
160 | (2) |
|
|
162 | (1) |
|
Creating Relational Tables |
|
|
163 | (1) |
|
Well-Structured Relations |
|
|
164 | (1) |
|
Transforming EER Diagrams into Relations |
|
|
165 | (13) |
|
Step 1 Map Regular Entities |
|
|
166 | (1) |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
167 | (2) |
|
When to Create a Surrogate Key |
|
|
169 | (1) |
|
Step 3 Map Binary Relationships |
|
|
169 | (1) |
|
Map Binary One-to-Many Relationships |
|
|
169 | (1) |
|
Map Binary Many-to-Many Relationships |
|
|
170 | (1) |
|
Map Binary One-to-One Relationships |
|
|
170 | (1) |
|
Step 4 Map Associative Entities |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
172 | (1) |
|
Step 5 Map Unary Relationships |
|
|
173 | (1) |
|
Unary One-to-Many Relationships |
|
|
173 | (1) |
|
Unary Many-to-Many Relationships |
|
|
174 | (1) |
|
Step 6 Map Ternary (and n-ary) Relationships |
|
|
175 | (1) |
|
Step 7 Map Supertype/Subtype Relationships |
|
|
176 | (2) |
|
Summary of EER-to-Relational Transformations |
|
|
178 | (1) |
|
Introduction to Normalization |
|
|
178 | (4) |
|
|
179 | (1) |
|
Functional Dependencies and Keys |
|
|
179 | (2) |
|
|
181 | (1) |
|
|
181 | (1) |
|
Normalization Example: Pine Valley Furniture Company |
|
|
182 | (6) |
|
Step 0 Represent the View in Tabular Form |
|
|
182 | (1) |
|
Step 1 Convert to First Normal Form |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (1) |
|
Step 2 Convert to Second Normal Form |
|
|
185 | (1) |
|
Step 3 Convert to Third Normal Form |
|
|
186 | (1) |
|
Removing Transitive Dependencies |
|
|
186 | (1) |
|
Determinants and Normalization |
|
|
187 | (1) |
|
Step 4 Further Normalization |
|
|
187 | (1) |
|
|
188 | (2) |
|
|
188 | (1) |
|
View Integration Problems |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
189 | (1) |
|
Supertype/Subtype Relationships |
|
|
190 | (1) |
|
A Final Step for Defining Relational Keys |
|
|
190 | (16) |
|
|
192 | (2) |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (9) |
|
|
204 | (1) |
|
|
204 | (1) |
|
|
204 | (1) |
|
|
204 | (1) |
|
Case: Forondo Artist Management Excellence Inc. |
|
|
205 | (1) |
|
Chapter 5 Physical Database Design and Performance |
|
|
206 | (35) |
|
|
206 | (1) |
|
|
206 | (1) |
|
The Physical Database Design Process |
|
|
207 | (3) |
|
Physical Database Design as a Basis for Regulatory Compliance |
|
|
208 | (1) |
|
Data Volume and Usage Analysis |
|
|
209 | (1) |
|
|
210 | (3) |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
213 | (1) |
|
Denormalizing and Partitioning Data |
|
|
213 | (6) |
|
|
213 | (1) |
|
Opportunities for and Types of Denormalization |
|
|
214 | (2) |
|
|
216 | (1) |
|
|
217 | (2) |
|
Designing Physical Database Files |
|
|
219 | (9) |
|
|
221 | (1) |
|
|
221 | (1) |
|
Sequential File Organizations |
|
|
221 | (1) |
|
Indexed File Organizations |
|
|
221 | (3) |
|
Hashed File Organizations |
|
|
224 | (3) |
|
|
227 | (1) |
|
Designing Controls for Files |
|
|
227 | (1) |
|
Using and Selecting Indexes |
|
|
228 | (2) |
|
Creating a Unique Key Index |
|
|
228 | (1) |
|
Creating a Secondary (Nonunique) Key Index |
|
|
228 | (1) |
|
|
229 | (1) |
|
Designing a Database for Optimal Query Performance |
|
|
230 | (11) |
|
Parallel Query Processing |
|
|
230 | (1) |
|
Overriding Automatic Query Optimization |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
234 | (3) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
238 | (1) |
|
Case: Forondo Artist Management Excellence Inc. |
|
|
239 | (2) |
|
|
241 | (176) |
|
|
241 | (2) |
|
Chapter 6 Introduction to SQL |
|
|
243 | (46) |
|
|
243 | (1) |
|
|
243 | (2) |
|
Origins of the SQL Standard |
|
|
245 | (2) |
|
|
247 | (4) |
|
Defining a Database in SQL |
|
|
251 | (6) |
|
Generating SQL Database Definitions |
|
|
252 | (1) |
|
|
253 | (2) |
|
Creating Data Integrity Controls |
|
|
255 | (1) |
|
Changing Table Definitions |
|
|
256 | (1) |
|
|
257 | (1) |
|
Inserting, Updating, and Deleting Data |
|
|
257 | (3) |
|
|
259 | (1) |
|
Deleting Database Contents |
|
|
259 | (1) |
|
Updating Database Contents |
|
|
259 | (1) |
|
Internal Schema Definition in RDBMSs |
|
|
260 | (1) |
|
|
260 | (1) |
|
|
261 | (28) |
|
Clauses of the Select Statement |
|
|
262 | (2) |
|
|
264 | (1) |
|
|
265 | (2) |
|
|
267 | (1) |
|
Using Comparison Operators |
|
|
267 | (1) |
|
|
268 | (1) |
|
|
268 | (3) |
|
Using Ranges for Qualification |
|
|
271 | (1) |
|
|
271 | (2) |
|
Using In and Not In with Lists |
|
|
273 | (1) |
|
Sorting Results: The Order By Clause |
|
|
274 | (1) |
|
Categorizing Results: The Group By Clause |
|
|
275 | (1) |
|
Qualifying Results by Categories: The HAVING Clause |
|
|
276 | (1) |
|
|
277 | (4) |
|
|
281 | (1) |
|
|
281 | (1) |
|
|
282 | (1) |
|
|
282 | (1) |
|
|
283 | (3) |
|
|
286 | (1) |
|
|
287 | (1) |
|
|
287 | (1) |
|
|
287 | (1) |
|
Case: Forondo Artist Management Excellence Inc. |
|
|
288 | (1) |
|
|
289 | (48) |
|
|
289 | (1) |
|
|
289 | (1) |
|
Processing Multiple Tables |
|
|
290 | (20) |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
293 | (2) |
|
Sample Join Involving Four Tables |
|
|
295 | (2) |
|
|
297 | (1) |
|
|
298 | (5) |
|
|
303 | (2) |
|
|
305 | (1) |
|
|
306 | (2) |
|
|
308 | (1) |
|
More Complicated SQL Queries |
|
|
308 | (2) |
|
Tips for Developing Queries |
|
|
310 | (4) |
|
Guidelines for Better Query Design |
|
|
312 | (2) |
|
Ensuring Transaction Integrity |
|
|
314 | (1) |
|
Data Dictionary Facilities |
|
|
315 | (2) |
|
Recent Enhancements and Extensions to SQL |
|
|
317 | (4) |
|
Analytical and OLAP Functions |
|
|
317 | (2) |
|
|
319 | (1) |
|
New Temporal Features in SQL |
|
|
319 | (1) |
|
|
320 | (1) |
|
|
321 | (6) |
|
|
321 | (2) |
|
Routines and other Programming Extensions |
|
|
323 | (2) |
|
Example Routine in Oracle's PL/SQL |
|
|
325 | (2) |
|
Embedded SQL and Dynamic SQL |
|
|
327 | (10) |
|
|
329 | (1) |
|
|
330 | (1) |
|
|
330 | (1) |
|
|
331 | (3) |
|
|
334 | (1) |
|
|
334 | (1) |
|
|
334 | (1) |
|
|
335 | (1) |
|
Case: Forondo Artist Management Excellence Inc. |
|
|
336 | (1) |
|
Chapter 8 Database Application Development |
|
|
337 | (37) |
|
|
337 | (1) |
|
Location, Location, Location! |
|
|
337 | (1) |
|
|
338 | (1) |
|
Client/Server Architectures |
|
|
338 | (2) |
|
Databases in a Two-Tier Architecture |
|
|
340 | (5) |
|
|
342 | (2) |
|
|
344 | (1) |
|
|
345 | (2) |
|
Web Application Components |
|
|
347 | (2) |
|
Databases in Three-Tier Applications |
|
|
349 | (7) |
|
|
349 | (4) |
|
|
353 | (2) |
|
|
355 | (1) |
|
Key Considerations in Three-Tier Applications |
|
|
356 | (5) |
|
|
356 | (3) |
|
|
359 | (1) |
|
|
359 | (1) |
|
Key Benefits of Three-Tier Applications |
|
|
359 | (1) |
|
Cloud Computing and Three-Tier Applications |
|
|
360 | (1) |
|
Extensible Markup Language (XML) |
|
|
361 | (13) |
|
|
363 | (1) |
|
|
363 | (3) |
|
|
366 | (1) |
|
|
366 | (3) |
|
|
369 | (1) |
|
|
370 | (1) |
|
|
370 | (1) |
|
|
371 | (1) |
|
|
372 | (1) |
|
|
372 | (1) |
|
|
372 | (1) |
|
|
372 | (1) |
|
Case: Forondo Artist Management Excellence Inc. |
|
|
373 | (1) |
|
Chapter 9 Data Warehousing |
|
|
374 | (43) |
|
|
374 | (1) |
|
|
374 | (2) |
|
Basic Concepts of Data Warehousing |
|
|
376 | (4) |
|
A Brief History of Data Warehousing |
|
|
377 | (1) |
|
The Need for Data Warehousing |
|
|
377 | (1) |
|
Need For a Company-Wide View |
|
|
377 | (2) |
|
Need to Separate Operational and Informational Systems |
|
|
379 | (1) |
|
Data Warehouse Architectures |
|
|
380 | (8) |
|
Independent Data Mart Data Warehousing Environment |
|
|
380 | (2) |
|
Dependent Data Mart and Operational Data Store Architecture: A Three-Level Approach |
|
|
382 | (2) |
|
Logical Data Mart and Real-Time Data Warehouse Architecture |
|
|
384 | (3) |
|
Three-Layer Data Architecture |
|
|
387 | (1) |
|
Role of the Enterprise Data Model |
|
|
388 | (1) |
|
|
388 | (1) |
|
Some Characteristics of Data Warehouse Data |
|
|
388 | (4) |
|
|
388 | (1) |
|
Transient Versus Periodic Data |
|
|
389 | (1) |
|
An Example of Transient and Periodic Data |
|
|
389 | (1) |
|
|
389 | (2) |
|
|
391 | (1) |
|
Other Data Warehouse Changes |
|
|
391 | (1) |
|
|
392 | (16) |
|
Characteristics of Derived Data |
|
|
392 | (1) |
|
|
393 | (1) |
|
Fact Tables and Dimension Tables |
|
|
393 | (1) |
|
|
394 | (1) |
|
|
395 | (1) |
|
|
396 | (1) |
|
|
397 | (1) |
|
|
397 | (1) |
|
|
398 | (1) |
|
Variations of the Star Schema |
|
|
399 | (1) |
|
|
399 | (1) |
|
|
400 | (1) |
|
Normalizing Dimension Tables |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
402 | (2) |
|
Slowly Changing Dimensions |
|
|
404 | (2) |
|
Determining Dimensions and Facts |
|
|
406 | (2) |
|
The Future of Data Warehousing: Integration with Big Data and Analytics |
|
|
408 | (9) |
|
|
409 | (1) |
|
|
409 | (1) |
|
Dealing with Unstructured Data |
|
|
409 | (1) |
|
|
410 | (1) |
|
|
410 | (1) |
|
|
411 | (1) |
|
|
411 | (4) |
|
|
415 | (1) |
|
|
415 | (1) |
|
|
416 | (1) |
|
|
416 | (1) |
|
Part V Advanced Database Topics |
|
|
417 | (119) |
|
|
417 | (2) |
|
Chapter 10 Data Quality and Integration |
|
|
419 | (26) |
|
|
419 | (1) |
|
|
419 | (1) |
|
|
420 | (1) |
|
|
421 | (7) |
|
Characteristics of Quality Data |
|
|
422 | (1) |
|
|
423 | (1) |
|
Redundant Data Storage and Inconsistent Metadata |
|
|
424 | (1) |
|
|
424 | (1) |
|
Lack of Organizational Commitment |
|
|
424 | (1) |
|
|
424 | (1) |
|
|
424 | (1) |
|
Conduct a Data Quality Audit |
|
|
425 | (1) |
|
Establish a Data Stewardship Program |
|
|
426 | (1) |
|
Improve Data Capture Processes |
|
|
426 | (1) |
|
Apply Modern Data Management Principles and Technology |
|
|
427 | (1) |
|
Apply TQM Principles and Practices |
|
|
427 | (1) |
|
|
427 | (1) |
|
|
428 | (1) |
|
Data Integration: An Overview |
|
|
429 | (2) |
|
General Approaches to Data Integration |
|
|
429 | (1) |
|
|
430 | (1) |
|
|
431 | (1) |
|
Data Integration for Data Warehousing: The Reconciled Data Layer |
|
|
431 | (6) |
|
Characteristics of Data After ETL |
|
|
431 | (1) |
|
|
432 | (1) |
|
Mapping and Metadata Management |
|
|
432 | (1) |
|
|
433 | (1) |
|
|
434 | (2) |
|
|
436 | (1) |
|
|
437 | (8) |
|
Data Transformation Functions |
|
|
438 | (1) |
|
|
438 | (1) |
|
|
439 | (2) |
|
|
441 | (1) |
|
|
441 | (1) |
|
|
441 | (1) |
|
|
442 | (1) |
|
|
443 | (1) |
|
|
443 | (1) |
|
|
444 | (1) |
|
|
444 | (1) |
|
Chapter 11 Big Data and Analytics |
|
|
445 | (40) |
|
|
445 | (1) |
|
|
445 | (2) |
|
|
447 | (2) |
|
|
449 | (11) |
|
Classification of NoSQL Database Management Systems |
|
|
450 | (1) |
|
|
450 | (1) |
|
|
450 | (1) |
|
|
451 | (1) |
|
|
451 | (1) |
|
|
452 | (1) |
|
|
452 | (1) |
|
|
452 | (1) |
|
|
452 | (1) |
|
|
452 | (1) |
|
Impact of NoSQL on Database Professionals |
|
|
452 | (1) |
|
|
453 | (1) |
|
|
454 | (1) |
|
The Hadoop Distributed File System (HDFS) |
|
|
454 | (1) |
|
|
455 | (1) |
|
|
456 | (1) |
|
|
456 | (1) |
|
|
457 | (1) |
|
Integrated Analytics and Data Science Platforms |
|
|
457 | (1) |
|
|
457 | (1) |
|
|
457 | (1) |
|
|
457 | (1) |
|
Putting It All Together: Integrated Data Architecture |
|
|
458 | (2) |
|
|
460 | (16) |
|
|
461 | (1) |
|
Use of Descriptive Analytics |
|
|
462 | (1) |
|
|
463 | (2) |
|
Online Analytical Processing (OLAP) Tools |
|
|
465 | (2) |
|
|
467 | (2) |
|
Business Performance Management and Dashboards |
|
|
469 | (1) |
|
Use of Predictive Analytics |
|
|
470 | (1) |
|
|
470 | (2) |
|
Examples of Predictive Analytics |
|
|
472 | (1) |
|
Use of Prescriptive Analytics |
|
|
473 | (1) |
|
Data Management Infrastructure for Analytics |
|
|
474 | (2) |
|
Impact of Big Data and Analytics |
|
|
476 | (9) |
|
Applications of Big Data and Analytics |
|
|
476 | (1) |
|
|
477 | (1) |
|
E-government and Politics |
|
|
477 | (1) |
|
|
478 | (1) |
|
Smart Health and Well-Being |
|
|
478 | (1) |
|
Security and Public Safety |
|
|
478 | (1) |
|
Implications of Big Data Analytics and Decision Making |
|
|
478 | (1) |
|
Personal Privacy vs. Collective Benefits |
|
|
479 | (1) |
|
|
479 | (1) |
|
Quality and Reuse of Data and Algorithms |
|
|
479 | (1) |
|
Transparency and Validation |
|
|
480 | (1) |
|
|
480 | (1) |
|
Demands for Workforce Capabilities and Education |
|
|
480 | (1) |
|
|
480 | (1) |
|
|
481 | (1) |
|
|
481 | (1) |
|
|
482 | (1) |
|
|
483 | (1) |
|
|
484 | (1) |
|
|
484 | (1) |
|
Chapter 12 Data and Database Administration |
|
|
485 | (51) |
|
|
485 | (1) |
|
|
485 | (1) |
|
The Roles of Data and Database Administrators |
|
|
486 | (6) |
|
Traditional Data Administration |
|
|
486 | (2) |
|
Traditional Database Administration |
|
|
488 | (1) |
|
Trends in Database Administration |
|
|
489 | (2) |
|
Data Warehouse Administration |
|
|
491 | (1) |
|
Summary of Evolving Data Administration Roles |
|
|
492 | (1) |
|
The Open Source Movement and Database Management |
|
|
492 | (2) |
|
|
494 | (5) |
|
|
495 | (1) |
|
Establishing Client/Server Security |
|
|
496 | (1) |
|
|
496 | (1) |
|
|
496 | (1) |
|
Application Security Issues in Three-Tier Client/Server Environments |
|
|
497 | (1) |
|
|
498 | (1) |
|
Database Software Data Security Features |
|
|
499 | (6) |
|
|
500 | (1) |
|
|
500 | (2) |
|
|
502 | (1) |
|
|
503 | (1) |
|
|
503 | (1) |
|
|
504 | (1) |
|
|
505 | (1) |
|
|
505 | (1) |
|
Sarbanes-Oxley (SOX) and Databases |
|
|
505 | (2) |
|
|
506 | (1) |
|
|
506 | (1) |
|
|
506 | (1) |
|
|
507 | (1) |
|
|
507 | (1) |
|
Database Backup and Recovery |
|
|
507 | (8) |
|
Basic Recovery Facilities |
|
|
508 | (1) |
|
|
508 | (1) |
|
|
508 | (1) |
|
|
509 | (1) |
|
|
509 | (1) |
|
Recovery and Restart Procedures |
|
|
510 | (1) |
|
|
510 | (1) |
|
|
510 | (1) |
|
Maintaining Transaction Integrity |
|
|
510 | (2) |
|
|
512 | (1) |
|
|
513 | (1) |
|
Types of Data base Failure |
|
|
513 | (1) |
|
|
513 | (1) |
|
|
513 | (1) |
|
|
514 | (1) |
|
|
514 | (1) |
|
|
514 | (1) |
|
Controlling Concurrent Access |
|
|
515 | (6) |
|
The Problem of Lost Updates |
|
|
515 | (1) |
|
|
515 | (1) |
|
|
516 | (1) |
|
|
516 | (1) |
|
|
517 | (1) |
|
|
518 | (1) |
|
|
518 | (1) |
|
|
519 | (2) |
|
Data Dictionaries and Repositories |
|
|
521 | (2) |
|
|
521 | (1) |
|
|
521 | (2) |
|
Overview of Tuning the Database for Performance |
|
|
523 | (3) |
|
|
523 | (1) |
|
Memory and Storage Space Usage |
|
|
523 | (1) |
|
Input/Output (I/O) Contention |
|
|
524 | (1) |
|
|
524 | (1) |
|
|
525 | (1) |
|
|
526 | (10) |
|
|
526 | (1) |
|
Measures to Ensure Availability |
|
|
526 | (1) |
|
|
527 | (1) |
|
Loss or Corruption of Data |
|
|
527 | (1) |
|
|
527 | (1) |
|
|
527 | (1) |
|
|
527 | (1) |
|
|
528 | (1) |
|
|
528 | (1) |
|
|
529 | (1) |
|
|
530 | (2) |
|
|
532 | (1) |
|
|
532 | (1) |
|
|
533 | (1) |
|
|
533 | (1) |
|
|
534 | (2) |
Glossary of Terms |
|
536 | (8) |
Index |
|
544 | |