Preface |
|
vii | |
The Authors |
|
xix | |
|
|
1 | (46) |
|
1.1 Basic equations for solid mechanics |
|
|
1 | (12) |
|
1.1.1 Equilibrium equations in terms of stresses |
|
|
4 | (1) |
|
1.1.2 Constitutive equations |
|
|
4 | (1) |
|
1.1.3 Compatibility equations |
|
|
5 | (1) |
|
1.1.4 Equilibrium equations in terms of displacements |
|
|
5 | (3) |
|
1.1.5 Boundary conditions |
|
|
8 | (1) |
|
1.1.6 Strain energy in solids |
|
|
9 | (1) |
|
1.1.7 Some notations and conventions |
|
|
10 | (1) |
|
1.1.8 Some basic concepts |
|
|
11 | (2) |
|
1.2 Numerical techniques: FEM vs. S-PIM |
|
|
13 | (9) |
|
|
13 | (3) |
|
1.2.2 On computational efficiency |
|
|
16 | (3) |
|
1.2.3 On shape function creation |
|
|
19 | (1) |
|
1.2.4 On integration over the problem domain |
|
|
19 | (1) |
|
1.2.5 On the use of weak forms |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
1.4 Basic properties of S-PIM |
|
|
23 | (1) |
|
|
24 | (3) |
|
1.6 Basic settings in S-PIM |
|
|
27 | (12) |
|
|
27 | (2) |
|
1.6.2 Characteristic length |
|
|
29 | (1) |
|
1.6.3 T-schemes for node selection |
|
|
30 | (9) |
|
|
39 | (3) |
|
|
42 | (5) |
|
|
47 | (48) |
|
2.1 General issues on function spaces |
|
|
47 | (5) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
2.1.8 Cauchy-Schwarz inequality |
|
|
51 | (1) |
|
2.1.9 General notation of derivatives |
|
|
51 | (1) |
|
2.2 Useful spaces in weak formulation |
|
|
52 | (13) |
|
|
52 | (6) |
|
|
58 | (6) |
|
|
64 | (1) |
|
2.2.4 Spaces of continuous functions |
|
|
65 | (1) |
|
|
65 | (17) |
|
2.3.1 Smoothing domain creation |
|
|
65 | (1) |
|
2.3.2 Linearly independent smoothing domains |
|
|
66 | (1) |
|
2.3.3 Integral representation of function derivatives |
|
|
66 | (1) |
|
2.3.4 Derivatives approximation |
|
|
67 | (1) |
|
2.3.5 On the treatment of the discontinuity |
|
|
68 | (2) |
|
2.3.6 On physical meaning of the gap smoothing |
|
|
70 | (1) |
|
2.3.7 Heaviside smoothing function |
|
|
71 | (2) |
|
2.3.8 General definition of G space |
|
|
73 | (1) |
|
|
74 | (3) |
|
2.3.10 Minimum number of smoothing domains |
|
|
77 | (1) |
|
2.3.11 G1 norms for 1D scalar fields |
|
|
77 | (1) |
|
2.3.12 G1 norms for 2D scalar fields |
|
|
78 | (2) |
|
2.3.13 G1 norms for 2D vector fields |
|
|
80 | (1) |
|
2.3.14 G1 norms for 3D vector fields |
|
|
81 | (1) |
|
2.4 G1h space: basic properties |
|
|
82 | (5) |
|
|
82 | (1) |
|
|
83 | (1) |
|
2.4.3 Scalar modification |
|
|
83 | (1) |
|
|
83 | (1) |
|
2.4.5 Cauchy-Schwarz inequality |
|
|
84 | (1) |
|
2.4.6 Triangular inequality |
|
|
84 | (3) |
|
2.5 G1h space: other properties |
|
|
87 | (5) |
|
2.5.1 Convergence property |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
88 | (1) |
|
|
89 | (1) |
|
|
90 | (2) |
|
|
92 | (1) |
|
|
93 | (2) |
|
Chapter 3 PIM shape function creation |
|
|
95 | (70) |
|
3.1 Requirements on shape functions |
|
|
95 | (9) |
|
3.1.1 Linear independence |
|
|
96 | (5) |
|
3.1.2 Partitions of unity |
|
|
101 | (1) |
|
|
101 | (1) |
|
3.1.4 Delta function property |
|
|
102 | (1) |
|
|
103 | (1) |
|
3.1.6 Basis: an essential role of shape functions |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
104 | (18) |
|
3.2.1 Procedure of creating shape functions |
|
|
105 | (3) |
|
3.2.2 Properties of PIM shape functions |
|
|
108 | (12) |
|
3.2.3 Methods to avoid singular moment matrix |
|
|
120 | (2) |
|
|
122 | (11) |
|
3.3.1 Rationale for using RBFs and polynomials |
|
|
122 | (1) |
|
3.3.2 Formulation of polynomial augmented RPIM |
|
|
123 | (5) |
|
3.3.3 RPIM shape functions with pure RBFs |
|
|
128 | (1) |
|
3.3.4 Singularity of the moment matrix |
|
|
129 | (1) |
|
3.3.5 On the range of the shape parameters |
|
|
130 | (1) |
|
3.3.6 Properties of RPIM shape functions |
|
|
130 | (3) |
|
3.4 PIM-CT shape functions |
|
|
133 | (4) |
|
3.4.1 Coordinate transformation |
|
|
134 | (1) |
|
3.4.2 Creation of PIM-CT shape functions |
|
|
134 | (1) |
|
3.4.3 Determination of rotation angle |
|
|
135 | (2) |
|
3.5 Isoparametric PIM shape functions |
|
|
137 | (6) |
|
3.5.1 Approach 1: using bilinear feature |
|
|
138 | (3) |
|
3.5.2 Approach 2: coordinate mapping |
|
|
141 | (2) |
|
3.6 Alpha PIM shape functions |
|
|
143 | (3) |
|
3.6.1 Given sets of PIM shape functions |
|
|
143 | (1) |
|
3.6.2 Creation of αPIM shape functions |
|
|
144 | (1) |
|
3.6.3 Properties of the αPIM shape functions |
|
|
145 | (1) |
|
3.7 Condensed RPIM shape functions |
|
|
146 | (4) |
|
3.7.1 Introduction of virtual nodes |
|
|
147 | (1) |
|
3.7.2 Introduction of constraints |
|
|
147 | (1) |
|
3.7.3 Properties of the condensed RPIM shape functions |
|
|
148 | (1) |
|
3.7.4 3D condensed RPIM shape functions |
|
|
149 | (1) |
|
|
150 | (1) |
|
3.9 Interpolation error estimation |
|
|
151 | (8) |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
153 | (4) |
|
3.9.4 Comparison errors in G1 and H1 norms |
|
|
157 | (2) |
|
|
159 | (1) |
|
|
159 | (6) |
|
Chapter 4 Strain field construction |
|
|
165 | (26) |
|
4.1 Why constructing strain field? |
|
|
166 | (1) |
|
4.2 Discrete models: a base for strain construction |
|
|
167 | (1) |
|
4.3 General procedure for strain construction |
|
|
167 | (2) |
|
4.4 Admissible conditions for constructed strain field |
|
|
169 | (5) |
|
4.4.1 Condition 1: orthogonal condition |
|
|
169 | (1) |
|
4.4.2 Condition 2a: norm equivalence condition |
|
|
169 | (4) |
|
4.4.3 Condition 2b: strain convergence condition |
|
|
173 | (1) |
|
4.4.4 Condition 3: zero-sum condition |
|
|
173 | (1) |
|
4.5 Strain construction techniques |
|
|
174 | (8) |
|
|
174 | (1) |
|
4.5.2 Strain construction by generalized smoothing |
|
|
175 | (4) |
|
4.5.3 Strain construction by point interpolation |
|
|
179 | (3) |
|
4.5.4 Strain construction by least square approximation |
|
|
182 | (1) |
|
4.6 A brief historical note |
|
|
182 | (1) |
|
|
183 | (1) |
|
|
184 | (7) |
|
Chapter 5 Weak and weakened weak formulations |
|
|
191 | (46) |
|
5.1 Briefing on weak forms |
|
|
192 | (1) |
|
|
192 | (1) |
|
5.1.2 Weakened weak forms |
|
|
192 | (1) |
|
|
193 | (3) |
|
|
193 | (2) |
|
|
195 | (1) |
|
5.3 Galerkin weak forms: alternative expressions |
|
|
196 | (1) |
|
5.4 FEM: a typical Galerkin weak formulation |
|
|
197 | (9) |
|
5.4.1 Weak statement for FEM models |
|
|
198 | (1) |
|
5.4.2 H1h A space of FEM displacements |
|
|
199 | (2) |
|
5.4.3 Compatible strain field |
|
|
201 | (1) |
|
5.4.4 Discrete system equations |
|
|
202 | (2) |
|
5.4.5 Imposition of the essential boundary conditions |
|
|
204 | (1) |
|
|
204 | (2) |
|
5.5 SC-Galerkin: a general W2 formulation |
|
|
206 | (2) |
|
5.6 GS-Galerkin: a widely used W2 form |
|
|
208 | (9) |
|
5.6.1 Bilinear forms in G1h spaces |
|
|
208 | (2) |
|
5.6.2 Properties of GS bilinear form |
|
|
210 | (2) |
|
5.6.3 GS-Galerkin statement |
|
|
212 | (4) |
|
5.6.4 GS-Galerkin: a special case of SC-Galerkin |
|
|
216 | (1) |
|
5.7 S-PLM: a typical W2 formulation |
|
|
217 | (10) |
|
5.7.1 PIM displacement field |
|
|
218 | (1) |
|
5.7.2 Smoothing domain creation in S-PIM |
|
|
219 | (1) |
|
5.7.3 Smoothed strain field |
|
|
220 | (4) |
|
5.7.4 Discretized equations for S-PIM |
|
|
224 | (2) |
|
5.7.5 Imposition of essential boundary conditions |
|
|
226 | (1) |
|
|
227 | (1) |
|
5.8 Error assessment in S-PIM and EEM models |
|
|
227 | (4) |
|
5.8.1 Error in displacement norm |
|
|
228 | (1) |
|
5.8.2 Error in energy norm |
|
|
228 | (3) |
|
|
231 | (3) |
|
|
234 | (3) |
|
Chapter 6 Node-based smoothed point interpolation method (NS-PIM) |
|
|
237 | (104) |
|
|
239 | (40) |
|
6.1.1 Approximation of displacement field |
|
|
239 | (2) |
|
6.1.2 Evaluation of node-based smoothed strains |
|
|
241 | (1) |
|
6.1.3 Equally-shared smoothing domains |
|
|
242 | (1) |
|
6.1.4 Voronoi smoothing domains |
|
|
243 | (1) |
|
6.1.5 Stiffness matrix for NS-PIM |
|
|
244 | (1) |
|
6.1.6 Comparison of NS-PIM, NS-FEM and FEM |
|
|
245 | (2) |
|
6.1.7 Macro flowchart of the NS-PIM |
|
|
247 | (1) |
|
6.1.8 Possible NS-PIM models |
|
|
248 | (3) |
|
6.1.9 Condition number of NS-PIM models |
|
|
251 | (1) |
|
6.1.10 Estimation of computational cost |
|
|
251 | (1) |
|
6.1.11 Issues on the treatments along boundaries |
|
|
252 | (1) |
|
6.1.12 Evaluation of nodal strain (stress) |
|
|
253 | (1) |
|
6.1.13 Rank test of NS-PIM |
|
|
253 | (2) |
|
6.1.14 Numerical examples for 2D solids |
|
|
255 | (24) |
|
6.2 NS-RPIM for 2D solids |
|
|
279 | (12) |
|
|
279 | (1) |
|
6.2.2 Support node selection |
|
|
279 | (1) |
|
6.2.3 Possible 2D NS-RPIM models |
|
|
280 | (1) |
|
6.2.4 Condition number of NS-RPIM models |
|
|
281 | (1) |
|
6.2.5 Estimation of computational cost for 2D NS-RPIM |
|
|
282 | (1) |
|
6.2.6 Numerical examples for 2D solids |
|
|
283 | (8) |
|
6.3 NS-PIM/NS-RPIM for 3D solids |
|
|
291 | (14) |
|
6.3.1 Approximation of displacement |
|
|
291 | (1) |
|
6.3.2 Computation of node-based smoothed strains |
|
|
292 | (1) |
|
6.3.3 Stiffness matrix of 3D NS-PIM |
|
|
293 | (1) |
|
6.3.4 Possible 3D NS-PIM/NS-RPIM models |
|
|
294 | (1) |
|
6.3.5 Condition number of 3D NS-PIM/NS-RPIM models |
|
|
295 | (1) |
|
6.3.6 Estimation of computational cost |
|
|
295 | (1) |
|
6.3.7 Numerical examples for 3D solids |
|
|
296 | (9) |
|
6.4 Upper bound properties of NS-PIM/NS-RPIM |
|
|
305 | (18) |
|
|
305 | (1) |
|
6.4.2 Bound properties of NS-PIM models |
|
|
306 | (4) |
|
6.4.3 Upper bound solutions: numerical examples |
|
|
310 | (13) |
|
|
323 | (2) |
|
|
325 | (12) |
|
6.6.1 On the structure of the source codes |
|
|
325 | (2) |
|
6.6.2 Source codes in FORTRAN 90 |
|
|
327 | (9) |
|
|
336 | (1) |
|
|
337 | (4) |
|
Chapter 7 Edge-based smoothed point interpolation method (ES-PIM) |
|
|
341 | (54) |
|
7.1 Approximation of displacement field |
|
|
342 | (2) |
|
7.2 Evaluation of edge-based smoothed strains |
|
|
344 | (1) |
|
|
345 | (3) |
|
|
345 | (1) |
|
|
346 | (1) |
|
7.3.3 Free vibration analysis |
|
|
346 | (1) |
|
7.3.4 Forced vibration analysis |
|
|
347 | (1) |
|
7.4 Numerical implementation |
|
|
348 | (9) |
|
7.4.1 Macro flowchart of the ES-PIM |
|
|
348 | (1) |
|
7.4.2 Possible ES-PIM models |
|
|
349 | (2) |
|
7.4.3 FS-PIM for 3D solids |
|
|
351 | (2) |
|
7.4.4 Evaluation of nodal strain (stress) |
|
|
353 | (1) |
|
7.4.5 Condition number of ES-PIM models |
|
|
354 | (1) |
|
7.4.6 Estimation of computational cost for ES-PIM |
|
|
355 | (1) |
|
7.4.7 Rank analysis for ES-PIM |
|
|
355 | (1) |
|
7.4.8 Temporal stability analysis |
|
|
356 | (1) |
|
|
357 | (23) |
|
|
380 | (1) |
|
|
381 | (11) |
|
|
381 | (1) |
|
7.7.2 Source codes in FORTRAN 90 |
|
|
382 | (9) |
|
|
391 | (1) |
|
|
392 | (3) |
|
Chapter 8 Cell-based smoothed point interpolation method (CS-PIM) |
|
|
395 | (66) |
|
|
396 | (37) |
|
8.1.1 Approximation of displacement field |
|
|
396 | (1) |
|
8.1.2 Evaluation of cell-based smoothed strains |
|
|
397 | (1) |
|
8.1.3 CS-PIM formulations |
|
|
398 | (2) |
|
8.1.4 Numerical implementation |
|
|
400 | (8) |
|
8.1.5 Numerical examples for 2D solids |
|
|
408 | (25) |
|
|
433 | (14) |
|
8.2.1 Approximation of displacement |
|
|
433 | (1) |
|
8.2.2 Evaluation of cell-based smoothed strains |
|
|
434 | (1) |
|
8.2.3 Numerical implementation |
|
|
435 | (4) |
|
8.2.4 Numerical examples for 3D solids |
|
|
439 | (8) |
|
|
447 | (1) |
|
|
448 | (10) |
|
|
448 | (1) |
|
8.4.2 Source codes in FORTRAN 90 |
|
|
449 | (7) |
|
|
456 | (2) |
|
|
458 | (3) |
|
Chapter 9 The cell-based smoothed alpha radial point interpolation method (CS-αRPIM) |
|
|
461 | (36) |
|
9.1 CS-αRPIM-Tr4 for 2D solids |
|
|
463 | (3) |
|
9.1.1 Approximation of displacement field |
|
|
463 | (1) |
|
9.1.2 Properties of αPIM shape functions |
|
|
464 | (1) |
|
9.1.3 Evaluation of cell-based smoothed strains |
|
|
465 | (1) |
|
9.1.4 CS-αRPIM formulations |
|
|
465 | (1) |
|
9.2 CS-αRPIM-Te5 for 3D solids |
|
|
466 | (1) |
|
9.3 Numerical implementation |
|
|
466 | (6) |
|
9.3.1 Macro flowchart of the CS-αRPIM |
|
|
466 | (1) |
|
9.3.2 Meshes with the same aspect ratio |
|
|
467 | (1) |
|
9.3.3 Some possible CS-αRPIM models |
|
|
468 | (1) |
|
9.3.4 Condition number of the CS-αRPIM models |
|
|
469 | (1) |
|
9.3.5 Estimation of computational cost |
|
|
470 | (1) |
|
9.3.6 Evaluation of nodal strain (stress) |
|
|
471 | (1) |
|
9.3.7 Rank analysis for CS-αRPIM models |
|
|
471 | (1) |
|
9.3.8 Temporal stability analysis |
|
|
472 | (1) |
|
9.4 Numerical examples for 2D solids |
|
|
472 | (15) |
|
9.5 Numerical examples for 3D solids |
|
|
487 | (6) |
|
|
493 | (1) |
|
|
494 | (3) |
|
Chapter 10 Strain-constructed point interpolation method (SC-PIM) |
|
|
497 | (30) |
|
10.1 Formulation of SC-PIM |
|
|
498 | (6) |
|
10.1.1 Displacement field construction |
|
|
498 | (1) |
|
10.1.2 Strain field construction |
|
|
498 | (5) |
|
10.1.3 Stiffness matrix for SC-PIM |
|
|
503 | (1) |
|
10.2 Numerical implementation |
|
|
504 | (4) |
|
10.2.1 Macro flowchart of the SC-PIM |
|
|
504 | (1) |
|
10.2.2 Possible SC-PIM models |
|
|
505 | (1) |
|
10.2.3 Condition number of SC-PIM models |
|
|
506 | (1) |
|
10.2.4 Estimation of computational cost for SC-PIM |
|
|
507 | (1) |
|
|
508 | (16) |
|
|
524 | (1) |
|
|
525 | (2) |
|
Chapter 11 S-PIM for heat transfer and thermoelasticity problems |
|
|
527 | (32) |
|
11.1 Heat transfer problems |
|
|
528 | (10) |
|
11.1.1 Problem statements |
|
|
528 | (4) |
|
11.1.2 Steady-state heat transfer |
|
|
532 | (1) |
|
11.1.3 Temperature field approximation |
|
|
532 | (1) |
|
11.1.4 Generalized gradient smoothing operation |
|
|
532 | (3) |
|
11.1.5 Discrete system equations |
|
|
535 | (1) |
|
11.1.6 Transit-state heat transfer |
|
|
536 | (2) |
|
11.2 Thermoelastic problems |
|
|
538 | (2) |
|
11.2.1 Modeling of the thermal strain and stress |
|
|
538 | (1) |
|
11.2.2 Discrete system equations |
|
|
538 | (2) |
|
|
540 | (15) |
|
|
555 | (1) |
|
|
556 | (3) |
|
Chapter 12 Singular CS-RPIM for fracture mechanics problems |
|
|
559 | (40) |
|
12.1 Formulation of the singular CS-RPIM |
|
|
561 | (6) |
|
12.1.1 Approximation of displacement field |
|
|
561 | (3) |
|
12.1.2 Evaluation of cell-based smoothed strains |
|
|
564 | (2) |
|
12.1.3 Discfetized system equations |
|
|
566 | (1) |
|
12.1.4 Possible singular CS-RPIM models |
|
|
566 | (1) |
|
12.2 Stress intensity factor evaluation |
|
|
567 | (8) |
|
|
568 | (1) |
|
12.2.2 Domain interaction integral |
|
|
569 | (5) |
|
12.2.3 Determination of area-path |
|
|
574 | (1) |
|
|
575 | (19) |
|
|
594 | (1) |
|
|
595 | (4) |
|
Chapter 13 Adaptive analysis using S-PIMs |
|
|
599 | (24) |
|
|
599 | (2) |
|
13.2 Adaptive analysis using S-PIMs |
|
|
601 | (6) |
|
13.2.1 Error indicator based on cell energy error |
|
|
601 | (2) |
|
13.2.2 Local refinement criteria |
|
|
603 | (1) |
|
13.2.3 Refinement strategy |
|
|
603 | (2) |
|
|
605 | (1) |
|
13.2.5 General adaptive procedure |
|
|
606 | (1) |
|
|
607 | (10) |
|
|
617 | (1) |
|
|
618 | (5) |
|
Appendix Program codes library |
|
|
623 | (42) |
|
Appendix 1 Description of the subroutines |
|
|
623 | (4) |
|
Appendix 2 A demonstration input file |
|
|
627 | (3) |
|
Input file of "Datalnput" |
|
|
627 | (3) |
|
Appendix 3 Source codes of two modules |
|
|
630 | (1) |
|
Module 1 Module Parameters |
|
|
630 | (1) |
|
Module 2 Module Variables |
|
|
630 | (1) |
|
Appendix 4 Source codes of the common subroutines |
|
|
631 | (34) |
|
Program 1 source code of "Input" |
|
|
631 | (1) |
|
Program 2 source code of "C_materialM" |
|
|
632 | (1) |
|
Program 3 source code of "Cell_information" |
|
|
633 | (6) |
|
Program 4 source code of "StiffM_Intedomain" |
|
|
639 | (1) |
|
Program 5 source code of "Form_GK" |
|
|
640 | (1) |
|
Program 6 source code of "Natural_LBC" |
|
|
640 | (1) |
|
Program 7 source code of "Essential_BC" |
|
|
641 | (1) |
|
Program 8 source code of "Solver_LAE" |
|
|
642 | (1) |
|
Program 9 source code of "Dispnorm_error" |
|
|
643 | (1) |
|
Program 10 source code of "PPIM_SF2D" |
|
|
644 | (1) |
|
Program 11 source code of "PPIM_CT_SF2D" |
|
|
645 | (2) |
|
Program 12 source code of "Iso_PPIM_SF2D" |
|
|
647 | (2) |
|
Program 13 source code of "RPIM_SF2D" |
|
|
649 | (1) |
|
Program 14 source code of "Con_RPIM_SF2D" |
|
|
650 | (1) |
|
Program 15 source code of "Poly_Basis2D" |
|
|
651 | (1) |
|
Program 16 source code of "Radial_Basis2D" |
|
|
652 | (1) |
|
Program 17 source code of "Cell_basedT2L" |
|
|
652 | (1) |
|
Program 18 source code of "Edge_basedT2L" |
|
|
653 | (1) |
|
Program 19 source code of "FormB_NSPIM" |
|
|
654 | (2) |
|
Program 20 source code of "Band_solver" |
|
|
656 | (1) |
|
Program 21 source code of "Gausspointcoe_line" |
|
|
657 | (1) |
|
Program 22 source code of "Line_gauss" |
|
|
658 | (1) |
|
Program 23 source code of "Determinant" |
|
|
659 | (1) |
|
Program 24 source code of "Brinv" |
|
|
660 | (2) |
|
Program 25 source code of "Inversion" |
|
|
662 | (1) |
|
Program 26 source code of "Indexx" |
|
|
662 | (3) |
Index |
|
665 | |