Update cookies preferences

E-book: Smoothed Point Interpolation Methods: G Space Theory and Weakened Weakforms [World Scientific e-book]

(University Of Cincinnati, Usa), (The Univ Of Western Australia, Australia)
  • Format: 696 pages
  • Pub. Date: 16-Oct-2013
  • Publisher: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814452854
Other books in subject:
  • World Scientific e-book
  • Price: 201,43 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Format: 696 pages
  • Pub. Date: 16-Oct-2013
  • Publisher: World Scientific Publishing Co Pte Ltd
  • ISBN-13: 9789814452854
Other books in subject:
Based on the widely used finite element method (FEM) and the latest Meshfree methods, a next generation of numerical method called Smoothed Point Interpolation Method (S-PIM) has been recently developed. The S-PIM is an innovative and effective combination of the FEM and the meshfree methods, and enables automation in computation, modeling and simulations one of the most important features of the next generation methods. This important book describes the various S-PIM models in a systematic, concise and easy-to-understand manner. The underlying principles for the next generation of computational methods, G space theory, novel weakened weak (W2) formulations, techniques for shape functions, formulation procedures, and implementation strategies are presented in detail. Numerous examples are provided to demonstrate the efficiency and accuracy of the S-PIM solutions in comparison with the FEM and other existing methods. Effective techniques to compute solution bounds employing both S-PIM and FEM are highlighted to obtain certified solutions with both upper and lower bounds.The book also presents a systematically way to conduct adaptive analysis for solutions of desired accuracy using these bound properties, which is another key feature of the next generation of computational methods. This will benefit researchers, engineers and students who are venturing into new areas of research and computer code development.
Preface vii
The Authors xix
Chapter 1 Preliminaries
1(46)
1.1 Basic equations for solid mechanics
1(12)
1.1.1 Equilibrium equations in terms of stresses
4(1)
1.1.2 Constitutive equations
4(1)
1.1.3 Compatibility equations
5(1)
1.1.4 Equilibrium equations in terms of displacements
5(3)
1.1.5 Boundary conditions
8(1)
1.1.6 Strain energy in solids
9(1)
1.1.7 Some notations and conventions
10(1)
1.1.8 Some basic concepts
11(2)
1.2 Numerical techniques: FEM vs. S-PIM
13(9)
1.2.1 An overview
13(3)
1.2.2 On computational efficiency
16(3)
1.2.3 On shape function creation
19(1)
1.2.4 On integration over the problem domain
19(1)
1.2.5 On the use of weak forms
20(1)
1.2.6 Sampling principle
21(1)
1.2.7 Summarized remarks
21(1)
1.3 Basic ideas of S-PIM
22(1)
1.4 Basic properties of S-PIM
23(1)
1.5 Basic steps in S-PIM
24(3)
1.6 Basic settings in S-PIM
27(12)
1.6.1 Triangulation
27(2)
1.6.2 Characteristic length
29(1)
1.6.3 T-schemes for node selection
30(9)
1.7 Outline of the book
39(3)
1.8 References
42(5)
Chapter 2 G Spaces
47(48)
2.1 General issues on function spaces
47(5)
2.1.1 Linear spaces
48(1)
2.1.2 Functional
48(1)
2.1.3 Norm
48(1)
2.1.4 Semi-norm
49(1)
2.1.5 Linear forms
49(1)
2.1.6 Bilinear forms
50(1)
2.1.7 Inner product
50(1)
2.1.8 Cauchy-Schwarz inequality
51(1)
2.1.9 General notation of derivatives
51(1)
2.2 Useful spaces in weak formulation
52(13)
2.2.1 Lebesgue spaces
52(6)
2.2.2 Hilbert spaces
58(6)
2.2.3 Sobolev spaces
64(1)
2.2.4 Spaces of continuous functions
65(1)
2.3 G spaces: definition
65(17)
2.3.1 Smoothing domain creation
65(1)
2.3.2 Linearly independent smoothing domains
66(1)
2.3.3 Integral representation of function derivatives
66(1)
2.3.4 Derivatives approximation
67(1)
2.3.5 On the treatment of the discontinuity
68(2)
2.3.6 On physical meaning of the gap smoothing
70(1)
2.3.7 Heaviside smoothing function
71(2)
2.3.8 General definition of G space
73(1)
2.3.9 G1 space and norms
74(3)
2.3.10 Minimum number of smoothing domains
77(1)
2.3.11 G1 norms for 1D scalar fields
77(1)
2.3.12 G1 norms for 2D scalar fields
78(2)
2.3.13 G1 norms for 2D vector fields
80(1)
2.3.14 G1 norms for 3D vector fields
81(1)
2.4 G1h space: basic properties
82(5)
2.4.1 Linearity
82(1)
2.4.2 Positivity
83(1)
2.4.3 Scalar modification
83(1)
2.4.4 Completeness?
83(1)
2.4.5 Cauchy-Schwarz inequality
84(1)
2.4.6 Triangular inequality
84(3)
2.5 G1h space: other properties
87(5)
2.5.1 Convergence property
87(1)
2.5.2 First inequality
88(1)
2.5.3 Second inequality
88(1)
2.5.4 Third inequality
89(1)
2.5.5 Softening effects
90(2)
2.6 Concluding remarks
92(1)
2.7 References
93(2)
Chapter 3 PIM shape function creation
95(70)
3.1 Requirements on shape functions
95(9)
3.1.1 Linear independence
96(5)
3.1.2 Partitions of unity
101(1)
3.1.3 Consistency
101(1)
3.1.4 Delta function property
102(1)
3.1.5 Compatibility
103(1)
3.1.6 Basis: an essential role of shape functions
103(1)
3.1.7 Interpolant
104(1)
3.2 PIM shape functions
104(18)
3.2.1 Procedure of creating shape functions
105(3)
3.2.2 Properties of PIM shape functions
108(12)
3.2.3 Methods to avoid singular moment matrix
120(2)
3.3 RPIM shape functions
122(11)
3.3.1 Rationale for using RBFs and polynomials
122(1)
3.3.2 Formulation of polynomial augmented RPIM
123(5)
3.3.3 RPIM shape functions with pure RBFs
128(1)
3.3.4 Singularity of the moment matrix
129(1)
3.3.5 On the range of the shape parameters
130(1)
3.3.6 Properties of RPIM shape functions
130(3)
3.4 PIM-CT shape functions
133(4)
3.4.1 Coordinate transformation
134(1)
3.4.2 Creation of PIM-CT shape functions
134(1)
3.4.3 Determination of rotation angle
135(2)
3.5 Isoparametric PIM shape functions
137(6)
3.5.1 Approach 1: using bilinear feature
138(3)
3.5.2 Approach 2: coordinate mapping
141(2)
3.6 Alpha PIM shape functions
143(3)
3.6.1 Given sets of PIM shape functions
143(1)
3.6.2 Creation of αPIM shape functions
144(1)
3.6.3 Properties of the αPIM shape functions
145(1)
3.7 Condensed RPIM shape functions
146(4)
3.7.1 Introduction of virtual nodes
147(1)
3.7.2 Introduction of constraints
147(1)
3.7.3 Properties of the condensed RPIM shape functions
148(1)
3.7.4 3D condensed RPIM shape functions
149(1)
3.8 Other methods
150(1)
3.9 Interpolation error estimation
151(8)
3.9.1 Error in L2 norm
152(1)
3.9.2 Error in H1 norm
152(1)
3.9.3 Error in G1 norm
153(4)
3.9.4 Comparison errors in G1 and H1 norms
157(2)
3.10 Concluding remarks
159(1)
3.11 References
159(6)
Chapter 4 Strain field construction
165(26)
4.1 Why constructing strain field?
166(1)
4.2 Discrete models: a base for strain construction
167(1)
4.3 General procedure for strain construction
167(2)
4.4 Admissible conditions for constructed strain field
169(5)
4.4.1 Condition 1: orthogonal condition
169(1)
4.4.2 Condition 2a: norm equivalence condition
169(4)
4.4.3 Condition 2b: strain convergence condition
173(1)
4.4.4 Condition 3: zero-sum condition
173(1)
4.5 Strain construction techniques
174(8)
4.5.1 At a glance
174(1)
4.5.2 Strain construction by generalized smoothing
175(4)
4.5.3 Strain construction by point interpolation
179(3)
4.5.4 Strain construction by least square approximation
182(1)
4.6 A brief historical note
182(1)
4.7 Concluding remarks
183(1)
4.8 References
184(7)
Chapter 5 Weak and weakened weak formulations
191(46)
5.1 Briefing on weak forms
192(1)
5.1.1 Weak forms
192(1)
5.1.2 Weakened weak forms
192(1)
5.2 Galerkin weak form
193(3)
5.2.1 Bilinear form
193(2)
5.2.2 Weak statement
195(1)
5.3 Galerkin weak forms: alternative expressions
196(1)
5.4 FEM: a typical Galerkin weak formulation
197(9)
5.4.1 Weak statement for FEM models
198(1)
5.4.2 H1h A space of FEM displacements
199(2)
5.4.3 Compatible strain field
201(1)
5.4.4 Discrete system equations
202(2)
5.4.5 Imposition of the essential boundary conditions
204(1)
5.4.6 FEM solutions
204(2)
5.5 SC-Galerkin: a general W2 formulation
206(2)
5.6 GS-Galerkin: a widely used W2 form
208(9)
5.6.1 Bilinear forms in G1h spaces
208(2)
5.6.2 Properties of GS bilinear form
210(2)
5.6.3 GS-Galerkin statement
212(4)
5.6.4 GS-Galerkin: a special case of SC-Galerkin
216(1)
5.7 S-PLM: a typical W2 formulation
217(10)
5.7.1 PIM displacement field
218(1)
5.7.2 Smoothing domain creation in S-PIM
219(1)
5.7.3 Smoothed strain field
220(4)
5.7.4 Discretized equations for S-PIM
224(2)
5.7.5 Imposition of essential boundary conditions
226(1)
5.7.6 S-PIM solutions
227(1)
5.8 Error assessment in S-PIM and EEM models
227(4)
5.8.1 Error in displacement norm
228(1)
5.8.2 Error in energy norm
228(3)
5.9 Concluding remarks
231(3)
5.10 References
234(3)
Chapter 6 Node-based smoothed point interpolation method (NS-PIM)
237(104)
6.1 NS-PIM for 2D solids
239(40)
6.1.1 Approximation of displacement field
239(2)
6.1.2 Evaluation of node-based smoothed strains
241(1)
6.1.3 Equally-shared smoothing domains
242(1)
6.1.4 Voronoi smoothing domains
243(1)
6.1.5 Stiffness matrix for NS-PIM
244(1)
6.1.6 Comparison of NS-PIM, NS-FEM and FEM
245(2)
6.1.7 Macro flowchart of the NS-PIM
247(1)
6.1.8 Possible NS-PIM models
248(3)
6.1.9 Condition number of NS-PIM models
251(1)
6.1.10 Estimation of computational cost
251(1)
6.1.11 Issues on the treatments along boundaries
252(1)
6.1.12 Evaluation of nodal strain (stress)
253(1)
6.1.13 Rank test of NS-PIM
253(2)
6.1.14 Numerical examples for 2D solids
255(24)
6.2 NS-RPIM for 2D solids
279(12)
6.2.1 Considerations
279(1)
6.2.2 Support node selection
279(1)
6.2.3 Possible 2D NS-RPIM models
280(1)
6.2.4 Condition number of NS-RPIM models
281(1)
6.2.5 Estimation of computational cost for 2D NS-RPIM
282(1)
6.2.6 Numerical examples for 2D solids
283(8)
6.3 NS-PIM/NS-RPIM for 3D solids
291(14)
6.3.1 Approximation of displacement
291(1)
6.3.2 Computation of node-based smoothed strains
292(1)
6.3.3 Stiffness matrix of 3D NS-PIM
293(1)
6.3.4 Possible 3D NS-PIM/NS-RPIM models
294(1)
6.3.5 Condition number of 3D NS-PIM/NS-RPIM models
295(1)
6.3.6 Estimation of computational cost
295(1)
6.3.7 Numerical examples for 3D solids
296(9)
6.4 Upper bound properties of NS-PIM/NS-RPIM
305(18)
6.4.1 Background
305(1)
6.4.2 Bound properties of NS-PIM models
306(4)
6.4.3 Upper bound solutions: numerical examples
310(13)
6.5 Concluding remarks
323(2)
6.6 Computer program
325(12)
6.6.1 On the structure of the source codes
325(2)
6.6.2 Source codes in FORTRAN 90
327(9)
6.6.3 Computed results
336(1)
6.7 References
337(4)
Chapter 7 Edge-based smoothed point interpolation method (ES-PIM)
341(54)
7.1 Approximation of displacement field
342(2)
7.2 Evaluation of edge-based smoothed strains
344(1)
7.3 ES-PIM formulations
345(3)
7.3.1 Dynamic analysis
345(1)
7.3.2 Static analysis
346(1)
7.3.3 Free vibration analysis
346(1)
7.3.4 Forced vibration analysis
347(1)
7.4 Numerical implementation
348(9)
7.4.1 Macro flowchart of the ES-PIM
348(1)
7.4.2 Possible ES-PIM models
349(2)
7.4.3 FS-PIM for 3D solids
351(2)
7.4.4 Evaluation of nodal strain (stress)
353(1)
7.4.5 Condition number of ES-PIM models
354(1)
7.4.6 Estimation of computational cost for ES-PIM
355(1)
7.4.7 Rank analysis for ES-PIM
355(1)
7.4.8 Temporal stability analysis
356(1)
7.5 Numerical examples
357(23)
7.6 Concluding remarks
380(1)
7.7 Computer program
381(11)
7.7.1 About the program
381(1)
7.7.2 Source codes in FORTRAN 90
382(9)
7.7.3 Computed results
391(1)
7.8 References
392(3)
Chapter 8 Cell-based smoothed point interpolation method (CS-PIM)
395(66)
8.1 CS-PIM for 2D solids
396(37)
8.1.1 Approximation of displacement field
396(1)
8.1.2 Evaluation of cell-based smoothed strains
397(1)
8.1.3 CS-PIM formulations
398(2)
8.1.4 Numerical implementation
400(8)
8.1.5 Numerical examples for 2D solids
408(25)
8.2 CS-PIM for 3D solids
433(14)
8.2.1 Approximation of displacement
433(1)
8.2.2 Evaluation of cell-based smoothed strains
434(1)
8.2.3 Numerical implementation
435(4)
8.2.4 Numerical examples for 3D solids
439(8)
8.3 Concluding remarks
447(1)
8.4 Computer program
448(10)
8.4.1 About the program
448(1)
8.4.2 Source codes in FORTRAN 90
449(7)
8.4.3 Computed results
456(2)
8.5 References
458(3)
Chapter 9 The cell-based smoothed alpha radial point interpolation method (CS-αRPIM)
461(36)
9.1 CS-αRPIM-Tr4 for 2D solids
463(3)
9.1.1 Approximation of displacement field
463(1)
9.1.2 Properties of αPIM shape functions
464(1)
9.1.3 Evaluation of cell-based smoothed strains
465(1)
9.1.4 CS-αRPIM formulations
465(1)
9.2 CS-αRPIM-Te5 for 3D solids
466(1)
9.3 Numerical implementation
466(6)
9.3.1 Macro flowchart of the CS-αRPIM
466(1)
9.3.2 Meshes with the same aspect ratio
467(1)
9.3.3 Some possible CS-αRPIM models
468(1)
9.3.4 Condition number of the CS-αRPIM models
469(1)
9.3.5 Estimation of computational cost
470(1)
9.3.6 Evaluation of nodal strain (stress)
471(1)
9.3.7 Rank analysis for CS-αRPIM models
471(1)
9.3.8 Temporal stability analysis
472(1)
9.4 Numerical examples for 2D solids
472(15)
9.5 Numerical examples for 3D solids
487(6)
9.6 Concluding remarks
493(1)
9.7 References
494(3)
Chapter 10 Strain-constructed point interpolation method (SC-PIM)
497(30)
10.1 Formulation of SC-PIM
498(6)
10.1.1 Displacement field construction
498(1)
10.1.2 Strain field construction
498(5)
10.1.3 Stiffness matrix for SC-PIM
503(1)
10.2 Numerical implementation
504(4)
10.2.1 Macro flowchart of the SC-PIM
504(1)
10.2.2 Possible SC-PIM models
505(1)
10.2.3 Condition number of SC-PIM models
506(1)
10.2.4 Estimation of computational cost for SC-PIM
507(1)
10.3 Numerical examples
508(16)
10.4 Concluding remarks
524(1)
10.5 References
525(2)
Chapter 11 S-PIM for heat transfer and thermoelasticity problems
527(32)
11.1 Heat transfer problems
528(10)
11.1.1 Problem statements
528(4)
11.1.2 Steady-state heat transfer
532(1)
11.1.3 Temperature field approximation
532(1)
11.1.4 Generalized gradient smoothing operation
532(3)
11.1.5 Discrete system equations
535(1)
11.1.6 Transit-state heat transfer
536(2)
11.2 Thermoelastic problems
538(2)
11.2.1 Modeling of the thermal strain and stress
538(1)
11.2.2 Discrete system equations
538(2)
11.3 Numerical examples
540(15)
11.4 Concluding remarks
555(1)
11.5 References
556(3)
Chapter 12 Singular CS-RPIM for fracture mechanics problems
559(40)
12.1 Formulation of the singular CS-RPIM
561(6)
12.1.1 Approximation of displacement field
561(3)
12.1.2 Evaluation of cell-based smoothed strains
564(2)
12.1.3 Discfetized system equations
566(1)
12.1.4 Possible singular CS-RPIM models
566(1)
12.2 Stress intensity factor evaluation
567(8)
12.2.1 J-integral
568(1)
12.2.2 Domain interaction integral
569(5)
12.2.3 Determination of area-path
574(1)
12.3 Numerical examples
575(19)
12.4 Concluding remarks
594(1)
12.5 References
595(4)
Chapter 13 Adaptive analysis using S-PIMs
599(24)
13.1 Introduction
599(2)
13.2 Adaptive analysis using S-PIMs
601(6)
13.2.1 Error indicator based on cell energy error
601(2)
13.2.2 Local refinement criteria
603(1)
13.2.3 Refinement strategy
603(2)
13.2.4 Cell regeneration
605(1)
13.2.5 General adaptive procedure
606(1)
13.3 Numerical examples
607(10)
13.4 Concluding remarks
617(1)
13.5 References
618(5)
Appendix Program codes library
623(42)
Appendix 1 Description of the subroutines
623(4)
Appendix 2 A demonstration input file
627(3)
Input file of "Datalnput"
627(3)
Appendix 3 Source codes of two modules
630(1)
Module 1 Module Parameters
630(1)
Module 2 Module Variables
630(1)
Appendix 4 Source codes of the common subroutines
631(34)
Program 1 source code of "Input"
631(1)
Program 2 source code of "C_materialM"
632(1)
Program 3 source code of "Cell_information"
633(6)
Program 4 source code of "StiffM_Intedomain"
639(1)
Program 5 source code of "Form_GK"
640(1)
Program 6 source code of "Natural_LBC"
640(1)
Program 7 source code of "Essential_BC"
641(1)
Program 8 source code of "Solver_LAE"
642(1)
Program 9 source code of "Dispnorm_error"
643(1)
Program 10 source code of "PPIM_SF2D"
644(1)
Program 11 source code of "PPIM_CT_SF2D"
645(2)
Program 12 source code of "Iso_PPIM_SF2D"
647(2)
Program 13 source code of "RPIM_SF2D"
649(1)
Program 14 source code of "Con_RPIM_SF2D"
650(1)
Program 15 source code of "Poly_Basis2D"
651(1)
Program 16 source code of "Radial_Basis2D"
652(1)
Program 17 source code of "Cell_basedT2L"
652(1)
Program 18 source code of "Edge_basedT2L"
653(1)
Program 19 source code of "FormB_NSPIM"
654(2)
Program 20 source code of "Band_solver"
656(1)
Program 21 source code of "Gausspointcoe_line"
657(1)
Program 22 source code of "Line_gauss"
658(1)
Program 23 source code of "Determinant"
659(1)
Program 24 source code of "Brinv"
660(2)
Program 25 source code of "Inversion"
662(1)
Program 26 source code of "Indexx"
662(3)
Index 665